

Plus System

A complete range for linear motion which reaches every customer

Actuator Line

Linear actuators with different drive and guide configurations, available with belt, screw or rack and pinion drives to cover a wide range of precision and speed requirements. Guides with bearings or recirculating ball systems for varying load capacities and environments.

A global provider of solutions for applications for linear motion

Actuator System Line

Integrated actuators for industrial automation,

wide ranging solutions that span industrial sectors: from machinery servo systems to high precision assembly systems, packaging lines and high speed production lines. Evolved from Actuator Line series in order to meet the most demanding customer needs.

Content

Plus System

Technical features overview

1 ELM series	
ELM series description	PLS-2
The components	PLS-3
The linear motion system	PLS-4
ELM 50 SP - ELM 50 CI	PLS-5
ELM 65 SP - ELM 65 CI	PLS-6
ELM 80 SP - ELM 80 CI	PLS-7
ELM 110 SP - ELM 110 CI	PLS-8
Lubrication, Planetary gear	PLS-9
Simple shaft	PLS-10
Hollow shafts	PLS-11
Linear units parallel, Accessories	PLS-12
Ordering key	PLS-14
2 ROBOT series	
ROBOT series description	PLS-15
The components	PLS-16
The linear motion system	PLS-17
ROBOT 100 SP	PLS-18
R0B0T 100 SP-2C	PLS-19
ROBOT 100 CE	PLS-20
ROBOT 100 CE-2C	PLS-21
ROBOT 130 SP	PLS-22
R0B0T 130 SP-2C	PLS-23
ROBOT 130 CE	PLS-24
R0B0T 130 CE-2C	PLS-25
ROBOT 160 SP	PLS-26
ROBOT 160 SP-2C	PLS-27
ROBOT 160 CE	PLS-28
ROBOT 160 CE-2C	PLS-29
ROBOT 220 SP	PLS-30
R0B0T 220 SP-2C	PLS-31
Lubrication, Planetary gear	PLS-32
Simple shaft	PLS-33
Hollow shafts, Accessories	PLS-34
Ordering key	PLS-39
3 SC series	
SC series description	PLS-40
The components	PLS-41
The linear motion system	PLS-42
SC 65 SP	PLS-43
SC 130 SP	PLS-44
SC 160 SP	PLS-45
Lubrication, Planetary gear	PLS-46
Simple shaft, Hollow shafts	PLS-47
Accessories	PLS-48
Ordering key	PLS-51
Multiaxis systems	PLS-52

Pre-selection overview

Application Priority	Driving system	Section
Max. speed from 4 to 15 [m/s] Max. acceleration from 10 to 50 [m/s²] Stroke up to 10 m	Over bus Dananana Belt	Square
		Rectangular
		Other section
High precision up to \pm 0,005 [mm]		Square
Stroke up to 3.5 m	Ball screw	Rectangular
Heavy loads up to 4.000 Kg Infinite stroke Multiple independent carriages	g o g Communication of the second of the s	Rectangular
		Other section
		Square
Vertical mounting		Rectangular
Profile moving	L J gg Ω Belt	Rectangular
		Other section

^{*} Optimal reliability in dirty environments thanks to plastic compound coated rollers

Protection			
	Product Fa	mily	Product
	Plus System		ELM
Protected	Modline		MCR/MCH with protection
	Eco System		ECO
Semi-protected	Modline		MCR/MCH
	Uniline System		UNILINE
Open	Smart System		E-SMART
Protected with suction	Clean Room System	To	ONE
Protected	Plus System		ROBOT
Onco	Smart System		R-SMART
Open	Modline		TCR/TCS
Open*	Speedy Rail A		SAB
		C	TV
	Bushing Bushing		TVS
Semi-protected	Precision System		π
			ТН
Onco	Taclina		PAS
Open	Tecline		PAR
Open*	Speedy Rail A		SAR
Semi-protected	Smart System	10/12	S-SMART
Semi-protected	Plus System		SC
Open	Modline	į.	ZCR/ZCH
Open*	Speedy Rail A		ZSY

Technical features overview // ~

	Reference		Sec	tion	Driving				Destruction
Pr	oduct Family	Product	Balls	Rollers	Toothed belt	Ball screw	Rack and pinion	Anticorrosion	Protection
		ELM						• •	Protected
Plus System		ROBOT			Onnannano			•	Protected
		SC			Laca O pacad			•	Semi-protected
Clean Room System	To	ONE			Onnananano			•	Protected with suctions
	-36	E-SMART							
Smart System	===	R-SMART							
	10/11	S-SMART			Land Oneal				Semi-protected
Eco System		ECO							Semi-protected
Uniline System		A/C/E/ED/H			Onnananano				Semi-protected
		MCR MCH						•	Semi-protected
Modline	The state of the s	TCR TCS			Ogganganan			•	
Woulde	į,	ZCR ZCH			honod Opnod			•	
		ZMCH			baad Opaad			•	

Reported data must be verified according to the application.

* Longer stroke is available for jointed version

Size		t. load capa per carriago [N]			. static mor per carriage [Nm]		Max. speed	Max. acceleration	Repeatability accuracy	Max stroke (per system)	
5,25	F _x	F _y	F _z	M _x	M _y	M _z	[m/s]	[m/s ²]	[mm]	[mm]	
50-65-80-110	4980	129400	129400	1392	11646	11646	5	50	± 0,05	6000*	
100-130- 160-220	9545	258800	258800	22257	28986	28986	5	50	± 0,05	6000*	
65-130-160	6682	153600	153600	13555	31104	31104	5	50	± 0,05	2500	
50-65-80-110	4980	104800	104800	1126	10532	10532	5	50	± 0,05	6000*	
30-50-80-100	4980	130860	130860	1500	12039	12039	4	50	± 0,05	6000*	
120-160-220	9960	258800	258800	21998	28468	28468	4	50	± 0,05	6000*	
50-65-80	2523	51260	51260	520	3742	3742	4	50	± 0,05	2000	
60-80-100	4565	76800	76800	722	7603	7603	5	50	± 0,05	6000*	
40-55-75	19360	11000	17400	800,4	24917	18788	7	15	± 0,05	5700*	
65-80-105	3984	51260	51260	520	5536	5536	5	50	± 0,1	10100*	
140-170 200-220-230 280- 360	9960	266400	266400	42624	61272	61272	5	50	± 0,1	11480	
60-90-100 170-220	7470	174480	174480	12388	35681	35681	4	25	± 0,1	2500	
105	4980	61120	61120	3591	10390	10390	3	25	± 0,1	2100	

C R S

Technical features overview

	Reference			Section		Driving			Protection
Pi	Product Family		Balls	Rollers	Toothed belt	Ball screw	Rack and pinion	Anticorrosion	
		TH				<i>m</i> _ <i>m</i>			Semi-protected
Precision		TT				<i>m</i> []mn			Semi-protected
System		TV				<i>m</i> []mn			Semi-protected
		TVS				<i>m</i> []mn		•	Semi-protected
Tecline	100	PAR PAS						•	
		SAB			OnnnananO				
Speedy Rail A		ZSY			hoard Operation				
		SAR							

Reported data must be verified according to the application.

* Longer stroke is available for jointed version

Size -	Max. load capacity per carriage [N]			Max. static moment per carriage [Nm]		Max. speed	Max. acceleration	Repeatability accuracy	Max stroke (per system)		
0.20	F _x	F _y	F _z	M _x	M _y	M _z	[m/s]	[m/s ²]	[mm]	[mm]	
70-90-110-145	32600	153600	153600	6682	5053	5053	2		± 0,005	1500	
100-155- 225-310	30500	230500	274500	30195	26625	22365	2,5		± 0,005	3000	
60-80-110	11538	85000	85000	1080	2316	2316	2,5		± 0,01	3000	
170-220	66300	258800	258800	19410	47360	47360	1	5	± 0,02	3500	
118-140-170- 200-220-230- 280-360	10989	386400	386400	65688	150310	150310	4	10	± 0,05	10800*	
60-120- 180-250	4565	3620	3620	372	362	362	15	10	± 0,2	7150	
180	4980	2300	2600	188	806	713	8	8	± 0,2	6640	
120-180-250	3598	3620	3620	372	453	453	3	10	± 0,15	7150*	

ELM series /

ELM series description

Fig. 1

ELM

This is Rollon's highly versatile, premier line of completely enclosed belt driven linear actuators.

The ELM linear units are available in four sizes from 50 mm to 110 mm. They have a self-supporting structure with a robust profile of extruded and anodized aluminum. The thrust force is transmitted by a steel reinforced, polyurethane belt. The moving carriage is guided and supported by a linear guide system or optional cam roller system.

A polyurethane sealing strip ensures complete protection of the belt drive and linear guide system against dust, dirt and other contaminants. It avoids the fragility of other sealing systems such as stainless steel strips.

The components used for linear motion and accessories promote a "maintenance-free" system. The pulleys, bearings and drive shafts are among the most robust in the industry. The ELM is the best product for applications in very aggressive working environments that also require high speed duty cycles and position repeatability.

Corrosion resistant version

All Plus System series of linear actuators are available with stainless steel elements, for applications in harsh environments and/or subject to frequent washes.

The Plus System linear units are constructed using extruded anodized 6060 and 6082 Anti-Corrosive Aluminum, which houses bearings, linear rails, nuts and bolts and components made of stainless steel preventing or delaying corrosion caused by humidity experienced in the environments where the linear units are used.

Special no-deposit surface treatments are combined with a food grade lubrication system to allow use in highly sensitive applications, such as the food and pharmaceutical industries where product contamination is prohibited.

- Internal stainless steel elements
- Anodized 6060 and 6082 Anti-Corrosive Aluminum Profile
- AISI 440 stainless steel linear rails
- Lubricated with organic food grade vegetable oils

The components

Extruded profile

The anodized 6060 aluminum alloy extrusion used for the profile of the Rollon ELM series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard.

Driving belt

The Rollon ELM series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

The carriage of the Rollon ELM series linear units are made entirely of anodized aluminum. Each carriage has mounting holes fitted with stainless steel thread inserts. Rollon offers multiple carriages to accommodate a vast array of applications. The unique design of the carriage allows for the sealing strip to pass through the carriage as well as house brush seals to remove contaminates from the sealing strip.

Sealing strip

Rollon ELM series linear units are equipped with a polyurethane sealing strip to protect all of the internal components from dust, contaminates, and other foreign objects. The sealing strip runs the length of the body and is kept in position by micro-bearings located inside the carriage. This minimizes resistance as the strip passes through the carriage while providing maximum protection.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J 	Ω . m . 10 ⁻⁹	°C
dm ³	mm ²	K	m . K	kg . K	22 . 111 . 10	Ü
2.7	69	23	200	880-900	33	600-655

Tab. 2

Mechanical characteristics

Rm	Rp (02)	А	НВ
N mm²	N — mm²	%	_
205	165	10	60-80

The linear motion system

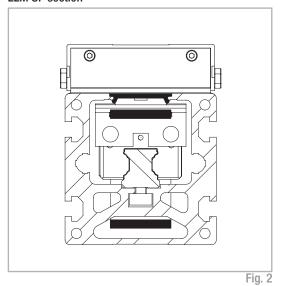
The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications. Two linear motion systems are offered:

ELM...SP with ball bearing guides

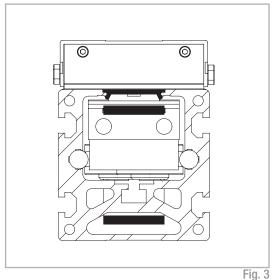
- A ball bearing guide with high load capacity is mounted in a dedicated seat inside the body.
- The carriage is assembled on two pre-loaded ball bearing blocks.
- The two ball bearing blocks enable the carriage to withstand loading in the four main directions.
- The two blocks have seals on both sides and, if necessary, an additional scraper can be fitted for very dusty conditions.
- The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- Lubrication reservoirs (pockets) installed on the front of the ball bearing blocks supply the right amount of grease, thus promoting long maintenance interval.

The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Maintenance free (depending on applications)
- Low noise

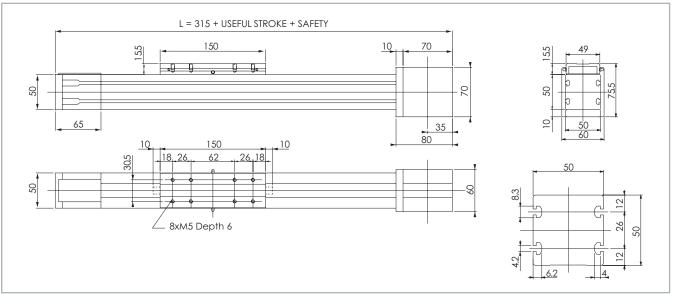

ELM...Cl with gothic arch bearing guides inside the body

- Two hardened steel rods (58/60 HRC tolerance h6) are securely inserted inside the aluminum body.
- The carriage is fitted with six bearing assemblies each having a gothic arch groove machined into its outer race to run on the steel rods.
- The six bearings are mounted on steel pins, two of which are eccentric, to allow setting of running clearance and pre-load.
- To keep the running tracks clean and lubricated, four grease impregnated felt seals, complete with grease reservoirs, are fitted on the ends of the carriage.


The linear motion system described above offers:

- Good positioning accuracy
- Low noise
- Maintenance free (depending on applications)

ELM SP section



ELM CI section

ELM 50 SP - ELM 50 CI

ELM 50 SP - ELM 50 CI Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 4

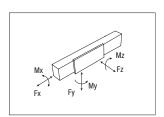
Technical data

	Ту	ре
	ELM 50 SP	ELM 50 CI
Max. useful stroke length [mm]	6130	5830*1
Max. positioning repeatability [mm]*2	± 0.05	± 0.05
Max. speed [m/s]	4.0	1.5
Max. acceleration [m/s²]	50	1.5
Type of belt	22 AT 5	22 AT 5
Type of pulley	Z 23	Z 23
Pulley pitch diameter [mm]	36.61	36.61
Carriage displacement per pulley turn [mm]	115	115
Carriage weight [kg]	0.4	0.5
Zero travel weight [kg]	1.8	1.7
Weight for 100 mm useful stroke [kg]	0.4	0.3
Starting torque [Nm]	0.4	0.4
Moment of inertia of pulleys [g mm ²]	19810	19810
Rail size [mm]	12 mini	Ø6
* 1) It is possible to obtain strokes up to 9000 mm by means of special F	Rollon joints	Tab. 4

^{*1)} It is possible to obtain strokes up to 9000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	[10 ⁷ mm ⁴]
ELM 50	0.025	0.031	0.056
			Tab. 5

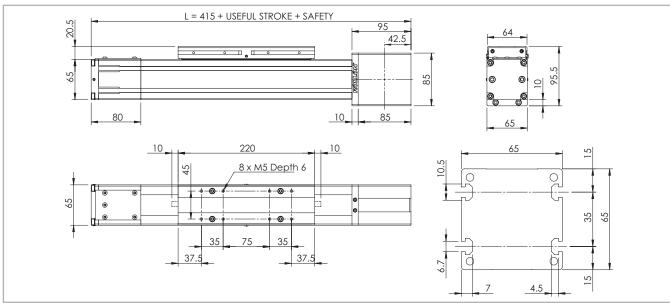

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	[kg/m]
ELM 50	22 AT 5	22	0.072

Tab. 6

Belt length (mm) = $2 \times L - 130$ (SP and CI Models)


ELM 50 - Load capacity

Туре	F [I	: X N]	F [t	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ELM 50 SP	809	508	7060	6350	7060	46.2	233	233
ELM 50 CI	809	624	1648	3072	1110	19.1	27	45.7

See verification under static load and lifetime on page SL-2 and SL-3

ELM 65 SP - ELM 65 CI

ELM 65 SP - ELM 65 CI Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

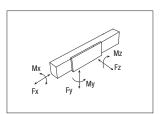
Fig. 5

Technical data

	Ту	pe
	ELM 65 SP	ELM 65 CI
Max. useful stroke length [mm]*1	6060	5760
Max. positioning repeatability [mm]*2	± 0.05	± 0.05
Max. speed [m/s]	5.0	1.5
Max. acceleration [m/s²]	50	1.5
Type of belt	32 AT 5	32 AT 5
Type of pulley	Z 32	Z 32
Pulley pitch diameter [mm]	50.93	50.93
Carriage displacement per pulley turn [mm]	160	160
Carriage weight [kg]	1.1	1.0
Zero travel weight [kg]	3.5	3.3
Weight for 100 mm useful stroke [kg]	0.6	0.5
Starting torque [Nm]	1.5	1.5
Moment of inertia of pulleys [g mm²]	117200	117200
Rail size [mm]	15	Ø6

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints

Moments of inertia of the aluminum body


Туре	l [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm⁴]
ELM 65	0.060	0.086	0.146
			Tab. 9

Driving belt

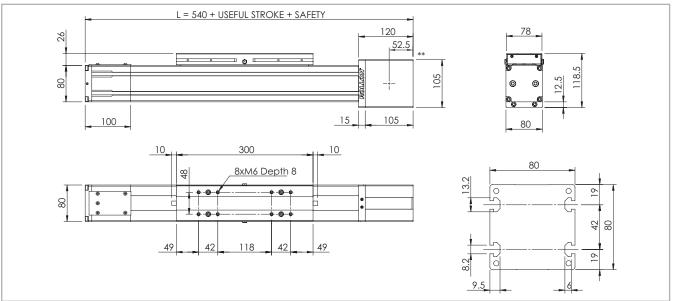
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	[kg/m]
ELM 65	32 AT 5	32	0.105

Tab. 10

ELM 65 - Load capacity

Туре	F [1	: X V]	F [1	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ELM 65 SP	1344	883	48400	22541	48400	320	1376	1376
ELM 65 CI	1344	1075	4229	8731	2849	69.5	80.1	117


Tab. 8

See verification under static load and lifetime on page SL-2 and SL-3

 $^{^{\}star}$ 2) Positioning repeatability is dependent on the type of transmission used

ELM 80 SP - ELM 80 CI

ELM 80 SP - ELM 80 CI Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

** For ELM80 with AC19 see PLS-11 for head length. Constant for total length calculation 554mm.

Technical data

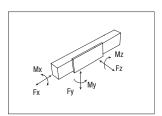
	Ту	pe
	ELM 80 SP	ELM 80 CI
Max. useful stroke length [mm]*1	5980	5680
Max. positioning repeatability [mm]*2	± 0.05	± 0.05
Max. speed [m/s]	5.0	1.5
Max. acceleration [m/s²]	50	1.5
Type of belt	32 AT 10	32 AT 10
Type of pulley	Z 19	Z 19
Pulley pitch diameter [mm]	60.48	60.48
Carriage displacement per pulley turn [mm]	190	190
Carriage weight [kg]	2.7	2.5
Zero travel weight [kg]	10.5	9.5
Weight for 100 mm useful stroke [kg]	1.0	8.0
Starting torque [Nm]	2.2	2.2
Moment of inertia of pulleys [g mm²]	388075	388075
Rail size [mm]	20	Ø10

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints

9.5	6 6
Moments of inertia of the alu	minum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
ELM 80	0.136	0.195	0.331
			Tab. 13

Driving belt


The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	[kg/m]
ELM 80	32 AT 10	32	0.185

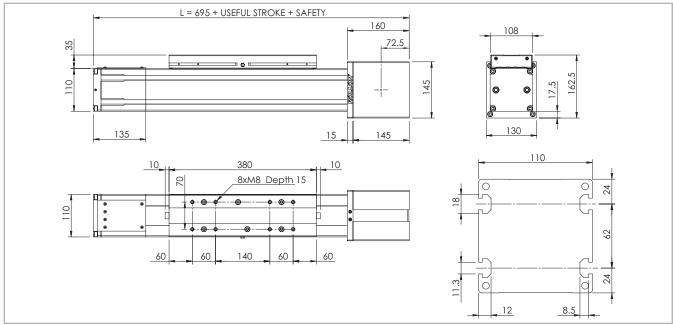
Tab. 14

Fig. 6

Belt length (mm) = 2 x L - 230 (SP and Cl Models)

ELM 80 - Load capacity

Туре	F [1	: X N]	F [N	: V N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ELM 80 SP	2258	1306	76800	35399	76800	722	5606	5606
ELM 80 CI	2258	1795	9154	20079	6167	177	352	454


Tab. 12

See verification under static load and lifetime on page SL-2 and SL-3

^{*2)} Positioning repeatability is dependent on the type of transmission used

ELM 110 SP - ELM 110 CI

ELM 110 SP - ELM 110 CI Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 7

Technical data

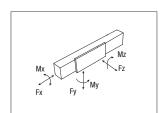
	Ту	ре
	ELM 110 SP	ELM 110 CI
Max. useful stroke length [mm]*1	5900	5600
Max. positioning repeatability [mm]*2	± 0.05	± 0.05
Max. speed [m/s]	5.0	1.5
Max. acceleration [m/s ²]	50	1.5
Type of belt	50 AT 10	50 AT 10
Type of pulley	Z 27	Z 27
Pulley pitch diameter [mm]	85.94	85.94
Carriage displacement per pulley turn [mm]	270	270
Carriage weight [kg]	5.6	5.1
Zero travel weight [kg]	22.5	21.6
Weight for 100 mm useful stroke [kg]	1.4	1.1
Starting torque [Nm]	3.5	3.5
Moment of inertia of pulleys [g mm²]	2.193·10 ⁶	2.193·10 ⁶
Rail size [mm]	25	Ø10
*1) It is possible to obtain strokes up to 11000 mm by means of special		Tab. 16

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x	l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
ELM 110	0.446	0.609	1.054

Tab. 17


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	[kg/m]
ELM 110	50 AT 10	50	0.290

Tab. 18

Belt length (mm) = 2 x L - 290 (SP and Cl Models)

ELM 110 - Load capacity

Туре	F [t	: Ň]	F [N	Ĭ]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ELM 110 SP	4980	3300	129400	58416	129400	1392	11646	11646
ELM 110 CI	4980	4140	9154	20079	6167	254	308	427

See verification under static load and lifetime on page SL-2 and SL-3

Lubrication

SP linear units with ball bearing guides

SP Linear units are equipped with self lubricating linear ball guides.

The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

Special lubrication reservoirs are mounted on the front plates of the linear blocks which continuously provide the necessary amount of grease to the ball raceways under load. These lubrication reservoirs also considerably reduce the frequency of lubrication of the module. This system guarantees

- Insert the tip of the grease gun in the specific grease blocks.
- For lubrication of linear units use lithium soap grease NLGI 2.
- For specially stressed applications or difficult environmental

a long interval between maintenances: SP version: every 5000 km or 1 year of use, based on the value reached first. If a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

CI linear units with gothic arch bearing guides

Linear units with gothic arch bearing guides are equipped with an extended period lubrication system. Four grease impregnated felt scrapers, complete with grease reservoirs, guarantee a service life of ca. 6000 km without relubrication. If relubrication is required to obtain a higher service life please contact our offices.

Quantity of lubricant necessary for re-lubrication:

Туре	Unit: [cm³]
ELM 50 SP	1
ELM 65 SP	1.4
ELM 80 SP	2.8
ELM 110 SP	4.8

Tab. 20

conditions, lubrication should be carried out more frequently. Refer to Rollon for further advice.

Planetary gears

Assembly to the right or to the left of the driving head

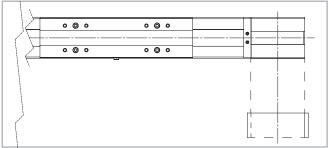
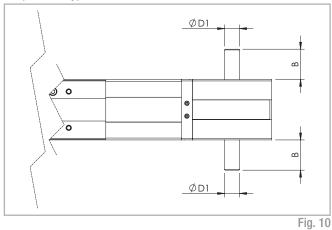


Fig. 9

The series ELM linear units can be fitted with several different drive systems. In each case, the driving pulley is attached to the reduction gearshaft by means of a tapered coupling to ensure high accuracy over a long period of time.

Versions with planetary gears


Planetary gears are used for highly dynamic robot, automation and handling applications involving high stress cycles with high

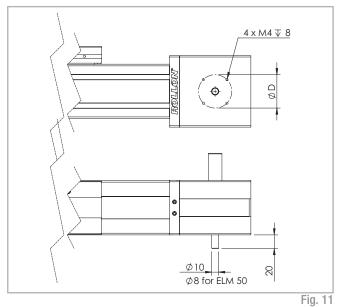
precision requirements. Standard models are available with clearance from 3' to 15' and with a reduction ratio from 1:3 to 1:1000. For assembly of non-standard planetary gear, contact our offices.

Туре	Left	Right	Gear type
ELM 50	4E	4C	MP 060
ELM 65	4E	4C	MP 060
ELM 65	6E	6C	MP 080
ELM 80	4E	4C	MP 080
ELM 80	6E	6C	MP 105
ELM 110	4E	4C	MP 105
ELM 110	6E	6C	MP 130
			T-I- 04

Simple shaft version

Simple shaft type AS

Unit	Shaft type	В	D1
ELM 50	AS 12	25	12h7
ELM 65	AS 15	35	15h7
ELM 80	AS 20	40	20h7
ELM 110	AS 25	50	25h7

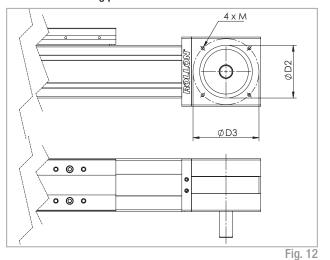

Tab. 22

Position of the simple shaft can be to the right, left, or both sides of the drive head.

Unit	Shaft type	Head code AS left	Head code AS right	Head code double AS
ELM 50	AS 12	1E	1C	1A
ELM 65	AS 15	1E	1C	1A
ELM 80	AS 20	1E	1C	1A
ELM 110	AS 25	1E	1C	1A

Tab. 23

Simple shaft type AE 10 for encoder assembly + AS

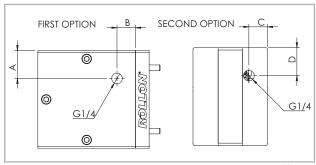


Unit	Head code AS right + AE	Head code AS left + AE	ØD
ELM 50	VF	VG	49
ELM 65	1G	11	49
ELM 80	1G	11	49
ELM 110	1G	11	76

Tab. 24

Position of the simple shafts for encoder assembly to the right or to the left on the drive head.

Shaft with centering pilot

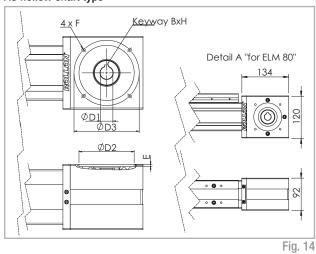


Unit	Shaft type	D2	D3	M	Head code AS left	Head code AS right
ELM 50	AS 12	55	70	M5	VQ	VP
ELM 65	AS 15	60	85	M6	UQ	UP
ELM 80	AS 20	80	100	M8	UN	UM
ELM 80	AS 20	80	100	M6	TD	UD
ELM 110	AS 25	110	130	M8	UL	UI

Tab. 25

Rollon can provide driving heads with output shaft, centering diameter and threads.

Air Hole


Е	i	n		4	9
Г	I	y	=	1	ú

Unit	Fit	rst	Second		
	Α	В	С	D	
ELM 50	20	10	14	20	
ELM 65	20	11	14	20	
ELM 80	30	20	20	30	
ELM 110	45	20,5	33	30	

Tab. 26

Hollow shafts

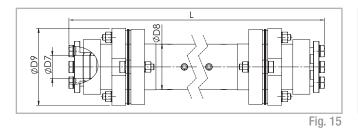
AC hollow shaft type

Appliable to unit	Shaft type	Head code
ELM 50	AC 12	2A
ELM 80	AC 19	2A
ELM 110	AC 25	2A
ELM 110	AC 32	2C

Tab. 27

An (optional) connection flange is required to fit the standard reduction units selected by Rollon. For further information contact our offices

Dimensions (mm)


Simonsons (initi)							
Appliable to unit	Shaft type	D1	D2	D3	E	F	Keyway B x H
ELM 50	AC 12	12H7	60	75	3.5	M5	4 x 4
ELM 80*	AC 19	19H7	80	100	3.5	M6	6 x 6
ELM 110	AC 25	25H7	110	130	4.5	M8	8 x 7
ELM 110	AC 32	32H7	130	165	4.5	M10	10 x 8

^{*} Dimensions of head change (see detail "A" Fig. 14)

Linear units in parallel

Synchronization kit for use of ELM linear units in parallel

When movement consisting of two linear units in parallel is essential, a synchronization kit must be used. This consists of original Rollon lamina type precision joints complete with tapered splines and hollow aluminum drive shafts.

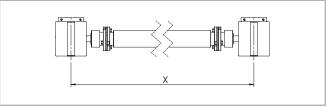
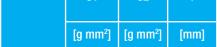


Fig. 16

Dimensions (mm)

Appliable to unit	Shaft type	D7	D8	D9	Code	Formula for length calculation
ELM 50	AP 12	12	25	45	GK12P1A	L= X-68 [mm]
ELM 65	AP 15	15	40	69.5	GK15P1A	L= X-74 [mm]
ELM 80	AP 20	20	40	69.5	GK20P1A	L= X-97 [mm]
ELM 110	AP 25	25	70	99	GK25P1A	L= X-165 [mm]


Tab. 29

Accessories

Fixing by brackets

The linear motion systems used for the Rollon series ELM linear units enables them to support loads in any direction. They can therefore be installed in any position.

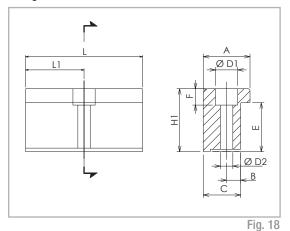
To install the units, we recommend the use of the dedicated T-slots in the extruded bodies as shown below.

Moment of inertia [g mm 2] C1 + C2 \cdot (X-Y)

	01	02		C1+C2	· (X-Y)
	[g mm²]	[g mm²]	[mm]	C1 [Kg]	C2 [Kg mm]
GK12P	61.456	69	166	0.308	0.00056
GK15P	906.928	464	210	2.28	0.00148
GK20P	1.014.968	464	250	2.48	0.00148
GK25P	5.525.250	4.708	356	6.24	0.0051

Tab. 30

 Fig. 17


Warning:

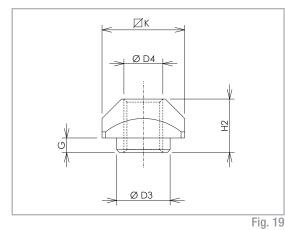
Unit	A (mm)
ELM 50	62
ELM 65	77
ELM 80	94
ELM 110	130

Tab. 31

Do not fix the linear units through the drive ends.

Fixing brackets

Dimensions (mm)


Unit	Α	H1	В	С	Е	F	D1	D2	L	Lt	Code
ELM 50	20	14	6	16	10	6	10	5.5	35	17.5	1000958
ELM 65	20	17.5	6	16	11.5	6	9.4	5.3	50	25	1001490
ELM 80	20	20.7	7	16	14.7	7	11	6.4	50	25	1001491
ELM 110	36.5	28.5	10	31	18.5	11.5	16.5	10.5	100	50	1001233

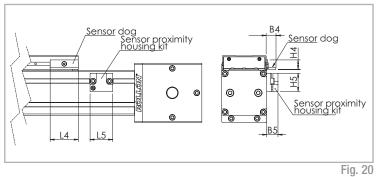
Tab. 32

Fixing bracket

Anodized aluminum block for fixing the linear units through the side T-slots of the body.

T-Nuts

Dimensions (mm)


Unit	D3	D4	G	H2	K	Code
ELM 50	-	M4	-	3.4	8	1001046
ELM 65	6.7	M5	2.3	6.5	10	1000627
ELM 80	8	M6	3.3	8.3	13	1000043
ELM 110	11	M8	2.8	10.8	17	1000932

Tab. 33

T-nuts

Steel nuts to be used in the T-slots of the body.

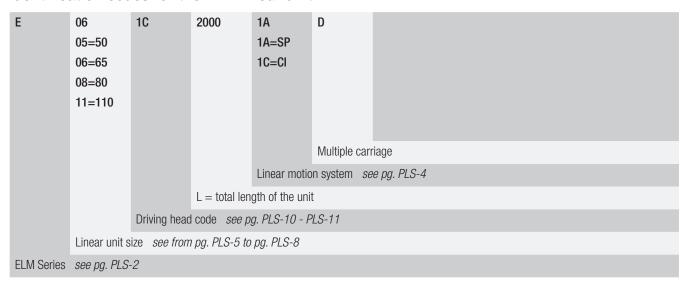
Proximity ELM...SP - ELM...Cl series

0 1

Sensor proximity housing kit

Red anodized aluminum sensor holder, equipped with T-nuts for fixing onto the profile.

Sensor dog


L-shaped bracket in zinc-plated iron, mounted on the carriage and used for proximity switch operations.

Dimensions (mm)

(וווווו) פווטופווטוווע									
Unit	B4	B5	L4	L5	H4	Н5	For proximity	Sensor dog code	Sensor proximity housing kit code
ELM 50	9.5	14	25	29	11.9	22.5	Ø 8	G000268	G000211
ELM 65	17.2	20	50	40	17	32	Ø 12	G000267	G000212
ELM 80	17.2	20	50	40	17	32	Ø 12	G000267	G000209
ELM 110	17.2	20	50	40	17	32	Ø 12	G000267	G000210

Ordering key // ~

Identification codes for the ELM linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

ROBOT series /

ROBOT series description

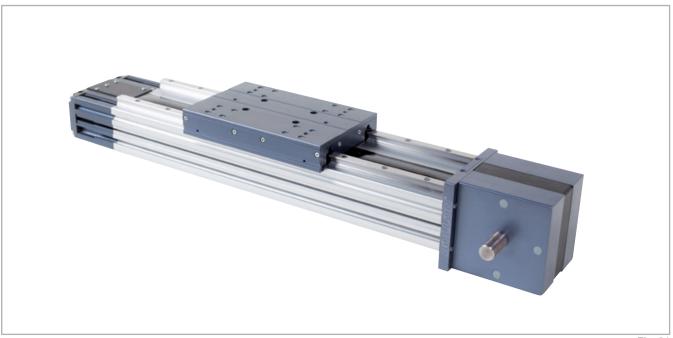


Fig. 21

ROBOT

The ROBOT series is particularly well-suited for heavy load applications where significant carriage pitch, yaw or roll moments are applied; or for the linear conveyance of SCARA-type and 6 axis articulated arm robots on a transfer or factory automation line. As a robust, high load choice, the ROBOT Series is the linear actuator for the most demanding applications.

Available in four sizes from 100 mm to 220 mm, the ROBOT series linear units have a rigid structure made by a heavy rectangular cross-section of extruded and anodized aluminum. The thrust force is transmitted by a steel reinforced polyurethane. The carriage is running on two parallel linear guides with four self-lubricated "maintenance-free" caged ball bearing blocks, positioned to support the carriage and all incident loads and moments. Multiple independent or idler style carriages are available to further enhance load or moment carrying capacity.

A polyurethane sealing strip ensures complete protection of the driving belt against dirt, chips, liquids and other contaminants.

The ROBOT series is the clear choice for heavy, high-speed, fluctuating load and moment applications in aggressive environments where repeatable, maintenance-free industrial automation is required.

For all sizes of the ROBOT series a 2C version with 2 independent carriages is also available. Each carriage is driven by its own belt. The driving head can accomodate two gearboxes, one on each side. This solution is ideal for pick & place application or loading and unloading machine.

Corrosion resistant version

All Plus System series of linear actuators are available with stainless steel elements, for applications in harsh environments and/or subject to frequent washes.

The Plus System linear units are constructed using extruded anodized 6060 and 6082 Anti-Corrosive Aluminum, which houses bearings, linear rails, nuts and bolts and components made of stainless steel, preventing or delaying corrosion caused by humidity experienced in the environments where the linear units are used.

Special no-deposit surface treatments are combined with a food grade lubrication system to allow use in highly sensitive applications, such as the food and pharmaceutical industries where product contamination is prohibited.

- Internal stainless steel elements
- Anodized 6060 and 6082 Anti-Corrosive Aluminum Profile
- AISI 440 stainless steel linear rails
- Lubricated with organic food grade vegetable oils

The components

Extruded profile

The anodized 6060 aluminum alloy extrusion used for the profile of the Rollon ROBOT series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. The dimensional tolerances comply with EN 755-9 standards. T-slots are provided in the side and bottom faces to facilitate mounting.

Driving belt

The Rollon ROBOT series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with backlash-free pulleys, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

The provision of guidance for the belt within the body causes it to run central on the pulley, there by ensuring long service life.

Carriage

The carriage of the Rollon ROBOT series linear units are made entirely of anodized aluminum. Each carriage has mounting holes fitted with stainless steel thread inserts. Rollon offers multiple carriages to accommodate a vast array of applications. The unique design of the carriage allows for the sealing strip to pass through the carriage as well as house brush seals to remove contaminates from the sealing strip.

Sealing strip

Rollon ROBOT series linear units are equipped with a polyurethane sealing strip to protect all of the internal components from dust, contaminants, and other foreign objects. The sealing strip runs the length of the body and is kept in posi-tion by micro-bearings located with in the carriage. This minimizes frictional resistance as the strip passes through the carriage while providing maximum protection.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 35

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	Ω . m . 10^{-9}	°C
dm ³	mm ²	K	m . K	kg . K	22 . 111 . 10 -	U
2.7	69	23	200	880-900	33	600-655

Tab. 36

Mechanical characteristics

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications. Two linear motion systems are offered:

ROBOT ...SP with ball bearing guides

- Two ball bearing guides with high load capacity are mounted in two dedicated seats on the outer sides of the body.
- The carriage is assembled on four pre-loaded ball bearing blocks.
- The four ball row configuration enable the carriage to withstand loading in the four main directions.
- The four blocks have seals on both sides and, if necessary, an additional scraper can be fitted for very dusty conditions.
- The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The lubrication reservoirs (pockets) fitted on the cages considerably decreases re-lubrication frequency. Lubrication reservoirs (pockets) installed on the front of the ball bearing blocks supply the right amount of grease, thus promoting long maintenance interval.

The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High bending permissible moments
- Low friction
- Long duration
- Maintenance free (dependent on application, see page PLS-32 "Lubrication")
- Low noise

ROBOT CE with gothic arch bearing guides

- Two hardened steel rods (58/60 HRC hardness, tolerance: h6) are securely inserted into the aluminum body.
- The carriage is fitted with six bearing assemblies (except for ROBOT 160), each having agothic arch groove machined into its outer race to run on the steel rods.
- The six bearings (except for ROBOT 160) are mounted on steel pins, of which are eccentric to allow the running clearance and preload to be set.
- To keep the running tracks clean and lubricated, four grease impregnated felt seals, complete with grease reservoirs, are fitted at the ends.

The linear motion system described above offers:

- Good positioning accuracy
- Low noise
- Maintenance free (dependant on application)

ROBOT SP section

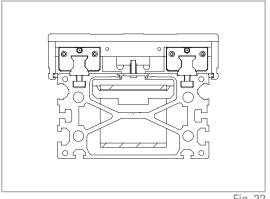
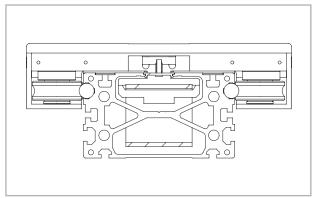
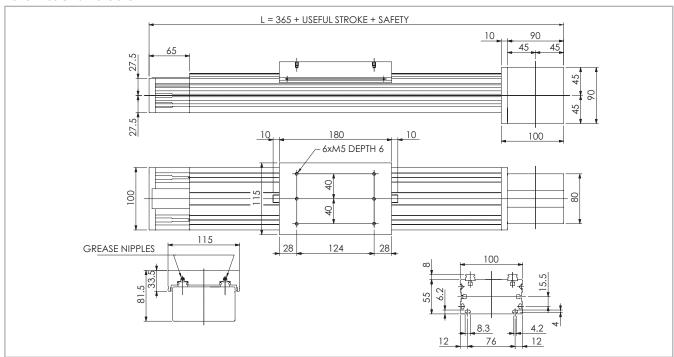


Fig. 22

ROBOT CE section




Fig. 23

ROBOT 2C

For both the SP an CE linear motion system is available the 2C version, which features 2 independent carriages on a single actuator.

ROBOT 100 SP

ROBOT 100 SP dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

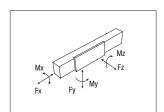
Fig. 24

Technical data

	Туре
	R0B0T 100 SP
Max. useful stroke length [mm]	6100
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s ²]	50
Type of belt	32 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36.61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	2.4
Zero travel weight [kg]	4.5
Weight for 100 mm useful stroke [kg]	0.8
Starting torque [Nm]	1.3
Moment of inertia of pulleys [g mm²]	87200
Rail size [mm]	15 mini
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 38

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 100	0.05	0.23	0.28
			Tab. 39


Driving belt

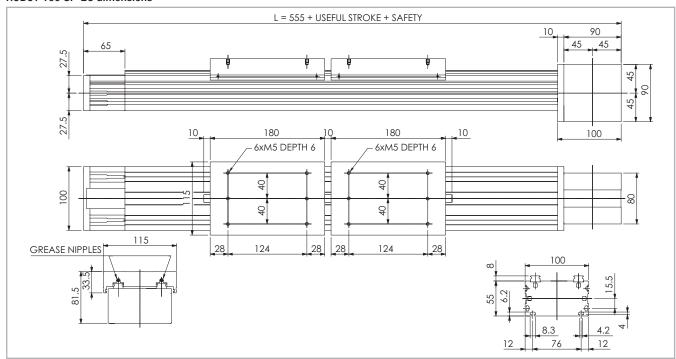
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	[kg/m]
R0B0T 100 SP	32 AT 5	32	0.105

Tab. 40

Belt length (mm) = $2 \times L - 115$

ROBOT 100 SP - Load capacity


Туре	F [1	: × V]	F [1	: V N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 100 SP	1176	739	22800	21144	22800	775	1322	1322

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

Tab. 41

■ ROBOT 100 SP-2C DOUBLE INDEPENDENT CARRIAGES

ROBOT 100 SP-2C dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 25

Technical data

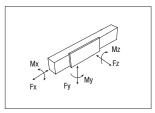
	Туре
	R0B0T 100 SP-2C
Max. useful stroke length [mm]	5910
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s ²]	50
Type of belt	16 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36.61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	2.4
Zero travel weight [kg]	8.0
Weight for 100 mm useful stroke [kg]	0.8
Starting torque [Nm]	1.3
Moment of inertia of pulleys [g mm²]	16220
Rail size [mm]	15 mini

 $^{^{\}star} 1)$ Positioning repeatability is dependent on the type of transmission used

Tab. 42

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
R0B0T 100	0.05	0.23	0.28
			Tab. 43

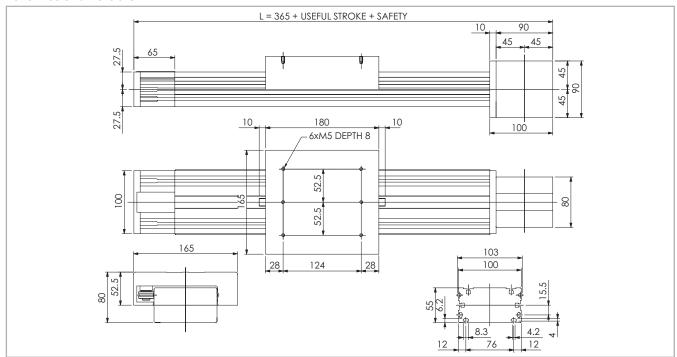

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R0B0T 100 SP-2C	16 AT 5	16	0.05
			T-1- 4.4

Tab. 44

Belt length (mm) = $2 \times L - 115$ Two belts for each actuator.


ROBOT 100 SP-2C - Load capacity

Туре	F [I	: X Nj	F [!	: v v	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 100 SP-2C	588	370	22800	21144	22800	775	1322	1322

See verification under static load and lifetime on page SL-2 and SL-3

ROBOT 100 CE

ROBOT 100 CE dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 26

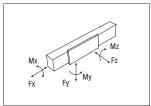
Technical data

	Туре
	ROBOT 100 CE
Max. useful stroke length [mm]	5800
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	1.5
Max. acceleration [m/s²]	1.5
Type of belt	32 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36.61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	3.4
Zero travel weight [kg]	5.5
Weight for 100 mm useful stroke [kg]	0.8
Starting torque [Nm]	1.3
Moment of inertia of pulleys [g mm²]	87200
Rail size [mm]	Ø6
) Positioning repeatability is dependent on the type of transmission used	Tab.

ROBOT	100	CE -	- Load	l capacity	

ge displacement per pulley turn [mm]	113	ROBOT 100-CE	32 AT 5	32
ge weight [kg]	3.4			

Moments of inertia of the aluminum body

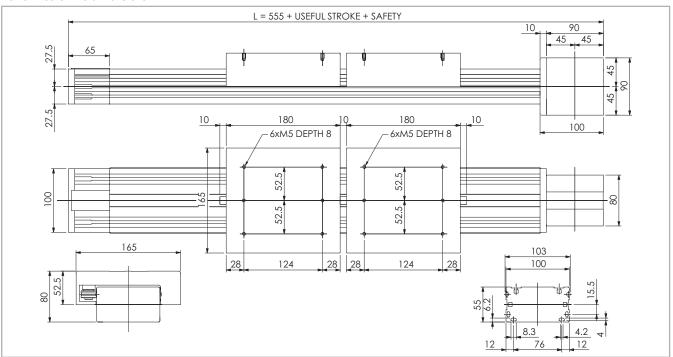

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 100	0.05	0.23	0.28
			Tab. 47

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ROBOT 100-CE	32 AT 5	32	0.105
			Tab. 48

Belt length (mm) = $2 \times L - 115$


Туре	F [N	: X V]	F [1	: Ň]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 100 CE	1176	907	4229	8731	2849	174	101	233

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 49

■ ROBOT 100 CE-2C DOUBLE INDEPENDENT CARRIAGES

ROBOT 100 CE-2C dimensions

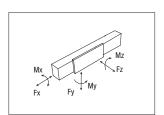
The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 27

Technical data

	Туре
	R0B0T 100 CE-2C
Max. useful stroke length [mm]	5610
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	1.5
Max. acceleration [m/s²]	1.5
Type of belt	16 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36.61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	3.4
Zero travel weight [kg]	10.5
Weight for 100 mm useful stroke [kg]	0.8
Starting torque [Nm]	1.3
Moment of inertia of pulleys [g mm²]	16220
Rail size [mm]	Ø6
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 50

Moments of inertia of the aluminum body

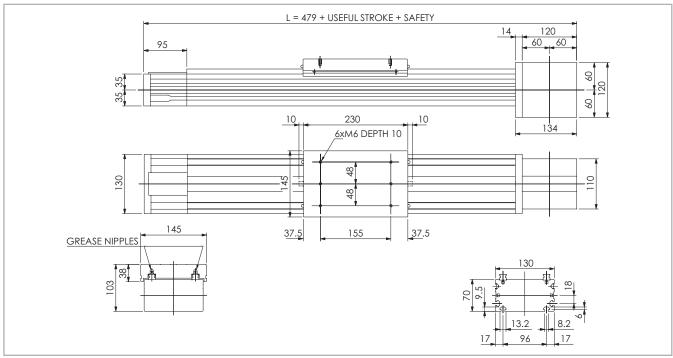

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm⁴]
R0B0T 100	0.05	0.23	0.28
			Tab. 51

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ROBOT 100 CE-2C	16 AT 5	16	0.05
			Tab. 52

Belt length (mm) = $2 \times L - 115$ Two belts for each actuator.


ROBOT 100 CE-2C - Load capacity

Туре		r N]	F [I	: vj	F _z [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 100 CE-2C	588	454	4229	8731	2849	174	101	233

See verification under static load and lifetime on page SL-2 and SL-3

ROBOT 130 SP

ROBOT 130 SP dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

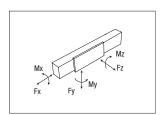
Fig. 28

Technical data

	Туре
	ROBOT 130 SP
Max. useful stroke length [mm]*1	6050
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	50 AT 10
Type of pulley	Z 17
Pulley pitch diameter [mm]	54.11
Carriage displacement per pulley turn [mm]	170
Carriage weight [kg]	2.8
Zero travel weight [kg]	9.1
Weight for 100 mm useful stroke [kg]	1.2
Starting torque [Nm]	2.7
Moment of inertia of pulleys [g mm²]	493200
Rail size [mm]	15
1) It is possible to obtain strokes up to 11000 mm by means of special Rollon	joints Tab. 54

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

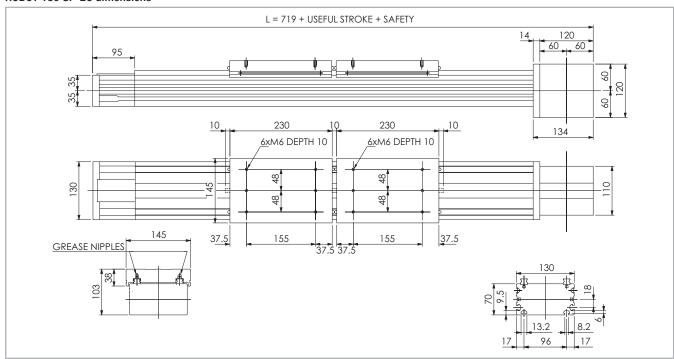

Туре	_x [10 ⁷ mm ⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
R0B0T 130	0.15	0.65	0.79
			Tab. 55

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ROBOT 130 SP	50 AT 10	50	0.29
			Tab. 56

Belt length (mm) = $2 \times L - 103$



ROBOT 130 SP - Load capacity

Туре	F [N	: X N]	F [N	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 130 SP	3112	1725	96800	45082	96800	4646	6340	6340

■ ROBOT 130 SP-2C DOUBLE INDEPENDENT CARRIAGES

ROBOT 130 SP-2C dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

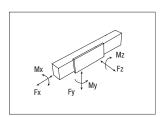
Fig. 29

Technical data

	Туре
	R0B0T 130 SP-2C
Max. useful stroke length [mm]*1	5810
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s²]	50
Type of belt	25 AT 10
Type of pulley	Z 17
Pulley pitch diameter [mm]	54.11
Carriage displacement per pulley turn [mm]	170
Carriage weight [kg]	2.8
Zero travel weight [kg]	14.9
Weight for 100 mm useful stroke [kg]	1.2
Starting torque [Nm]	2.7
Moment of inertia of pulleys [g mm²]	196200
Rail size [mm]	15
*1) It is possible to obtain strokes up to 11000 mm by means of special Rollon jo	ints Tab. 58

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

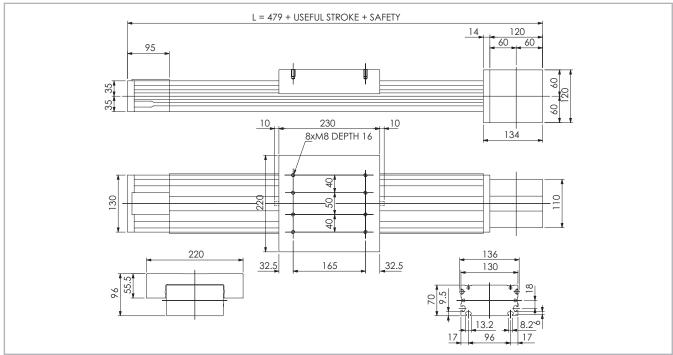

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 130	0.15	0.65	0.79
			Tab. 59

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R0B0T 130 SP-2C	25 AT 10	25	0.16
			Tab. 60

Belt length (mm) = $2 \times L - 103$ Two belts for each actuator.


ROBOT 130 SP-2C - Load capacity

Туре	F _x [N]		F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 130 SP-2C	1556	862	96800	45082	96800	4646	6340	6340

See verification under static load and lifetime on page SL-2 and SL-3

ROBOT 130 CE

ROBOT 130 CE dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 30

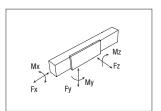
Technical data

	Туре
	ROBOT 130 CE
Max. useful stroke length [mm]*1	5750
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	1.5
Max. acceleration [m/s ²]	1.5
Type of belt	50 AT 10
Type of pulley	Z 17
Pulley pitch diameter [mm]	54.11
Carriage displacement per pulley turn [mm]	170
Carriage weight [kg]	4.3
Zero travel weight [kg]	10.3
Weight for 100 mm useful stroke [kg]	1.1
Starting torque [Nm]	2.7
Moment of inertia of pulleys [g mm²]	493200
Rail size [mm]	Ø10
*1) It is possible to obtain strokes up to 11000 mm by means of special Rollon	joints Tab. 62

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 130	0.15	0.65	0.79
			Tab. 63

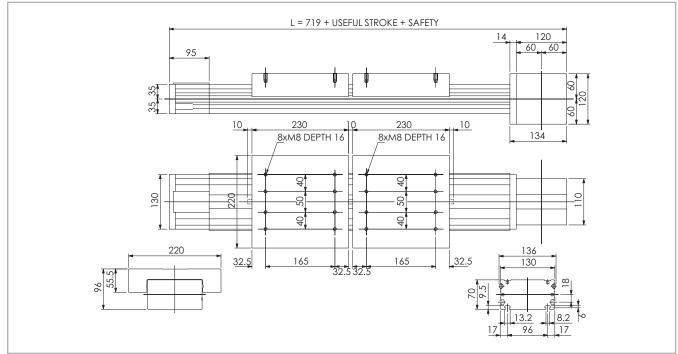

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]	
ROBOT 130 CE	50 AT 10	50	0.29	

Tab. 64

Belt length (mm) = $2 \times L - 103$


ROBOT 130 CE - Load capacity

Туре	F _x [N]		F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 130 CE	3112	2437	9154	20079	6167	498	275	635

See verification under static load and lifetime on page SL-2 and SL-3

ROBOT 130 CE-2C DOUBLE INDEPENDENT CARRIAGES

ROBOT 130 CE-2C dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

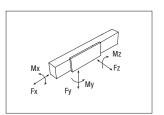
Fig. 31

Technical data

	Туре
	R0B0T 130 CE-2C
Max. useful stroke length [mm]*1	5510
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	1.5
Max. acceleration [m/s²]	1.5
Type of belt	25 AT 10
Type of pulley	Z 17
Pulley pitch diameter [mm]	54.11
Carriage displacement per pulley turn [mm]	170
Carriage weight [kg]	4.3
Zero travel weight [kg]	17.4
Weight for 100 mm useful stroke [kg]	1.1
Starting torque [Nm]	2.7
Moment of inertia of pulleys [g mm²]	196200
Rail size [mm]	Ø10
1) It is possible to obtain strokes up to 11000 mm by means of special Rollon jo	ints Tab. 6

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

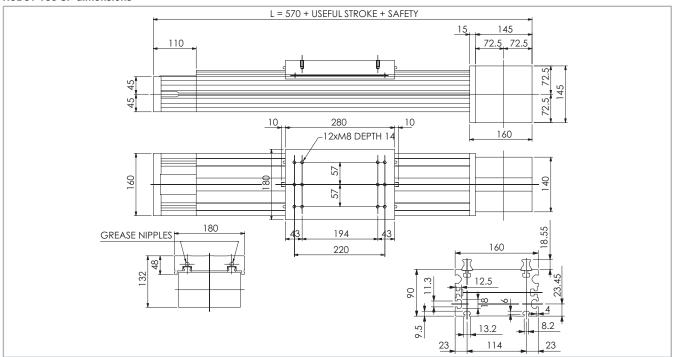

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]	
R0B0T 130	0.15	0.65	0.79	
			Tab. 67	

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ROBOT 130 CE-2C	25 AT 10	25	0.16
			Tab. 68

Belt length (mm) = $2 \times L - 103$ Two belts for each actuator.



ROBOT 130 CE-2C - Load capacity

Туре	F _x [N]		F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 130 CE-2C	1556	1219	9154	20079	6167	498	275	635

ROBOT 160 SP

ROBOT 160 SP dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 32

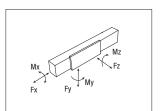
Technical data

	Туре
	ROBOT 160 SP
Max. useful stroke length [mm]*1	6000
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	70 AT 10
Type of pulley	Z 20
Pulley pitch diameter [mm]	63.66
Carriage displacement per pulley turn [mm]	200
Carriage weight [kg]	5.3
Zero travel weight [kg]	21
Weight for 100 mm useful stroke [kg]	1.9
Starting torque [Nm]	4.5
Moment of inertia of pulleys [g mm ²]	1.202 · 10 ⁶
Rail size [mm]	20
*1) It is possible to obtain strokes up to 11000 mm by means of special Rollon j	oints Tab. 7

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 160	0.37	1.51	1.88
			Tab. 71

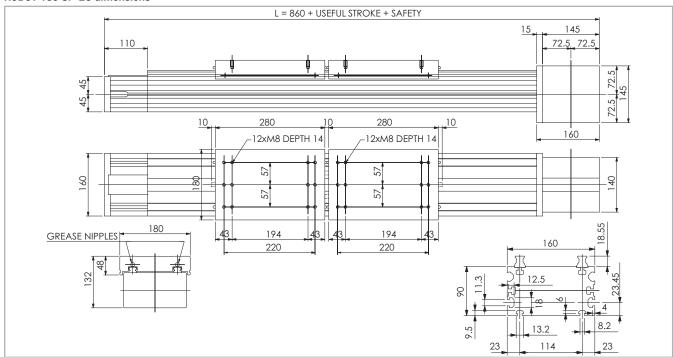

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ROBOT 160 SP	70 AT 10	70	0.41

Tab. 72

Belt length (mm) = $2 \times L - 130$



ROBOT 160 SP - Load capacity

Туре	F _x [N]		F, [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 160 SP	5229	3024	153600	70798	153600	8755	12211	12211

■ ROBOT 160 SP-2C DOUBLE INDEPENDENT CARRIAGES

ROBOT 160 SP-2C dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 33

Technical data

	Туре
	R0B0T 160 SP-2C
Max. useful stroke length [mm]*1	5710
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s²]	50
Type of belt	32 AT 10
Type of pulley	Z 19
Pulley pitch diameter [mm]	60.48
Carriage displacement per pulley turn [mm]	190
Carriage weight [kg]	5.3
Zero travel weight [kg]	30
Weight for 100 mm useful stroke [kg]	1.9
Starting torque [Nm]	4.5
Moment of inertia of pulleys [g mm ²]	210300
Rail size [mm]	20
) It is possible to obtain strokes up to 11000 mm by means of special Rollor	n joints Tab. 1

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

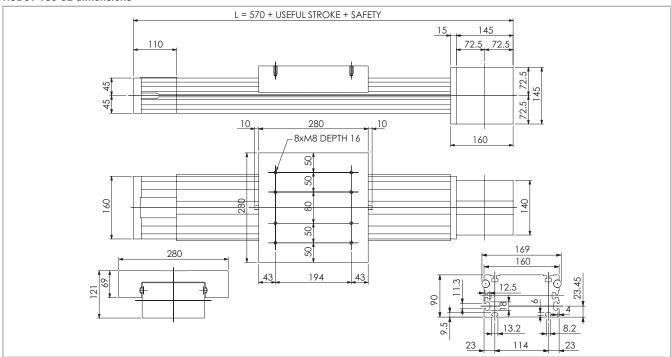
Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
R0B0T 160	0.37	1.51	1.88
			Tab. 75

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ROBOT 160 SP-2C	32 AT 10	32	0.185
			Tab. 76


Belt length (mm) = $2 \times L - 130$ Two belts for each actuator.

ROBOT 160 SP - Load capacity

Туре	F _x [N]		F [N	Ĭ	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 160 SP-2C	2258	1306	153600	70798	153600	8755	12211	12211

ROBOT 160 CE

ROBOT 160 CE dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

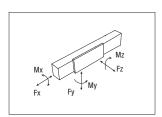
Fig. 34

Technical data

	Туре
	ROBOT 160 CE
Max. useful stroke length [mm]*1	5700
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	1.5
Max. acceleration [m/s ²]	1.5
Type of belt	70 AT 10
Type of pulley	Z 20
Pulley pitch diameter [mm]	63.66
Carriage displacement per pulley turn [mm]	200
Carriage weight [kg]	8.6
Zero travel weight [kg]	23
Weight for 100 mm useful stroke [kg]	2.2
Starting torque [Nm]	4.5
Moment of inertia of pulleys [g mm²]	$1.202 \cdot 10^{6}$
Rail size [mm]	Ø16
*1) It is possible to obtain strokes up to 11000 mm by means of special Rollon jo	oints Tab. 78

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body


Туре	_x [10 ⁷ mm ⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm ⁴]
R0B0T 160	0.37	1.51	1.88
			Tab. 79

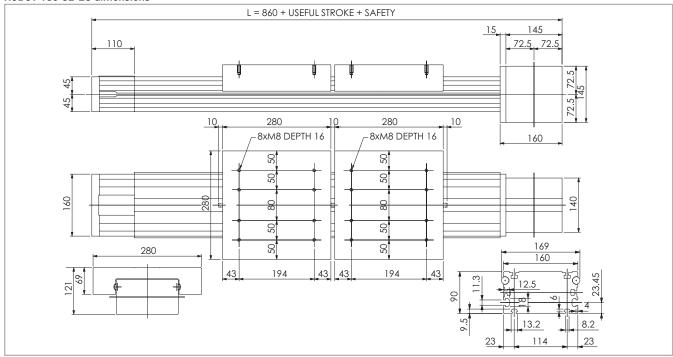
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ROBOT 160 CE	70 AT 10	70	0.41
			Tab. 80

Belt length (mm) = $2 \times L - 130$

ROBOT 160 CE - Load capacity


Туре	F _x [N]		F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 160 CE	5229	4158	15538	35366	8585	1053	653	1507

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 81

■ ROBOT 160 CE-2C DOUBLE INDEPENDENT CARRIAGES

ROBOT 160 CE-2C dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

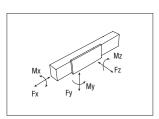
Fig. 35

Technical data

	Туре
	R0B0T 160 CE-2C
Max. useful stroke length [mm]*1	5410
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	1.5
Max. acceleration [m/s²]	1.5
Type of belt	32 AT 10
Type of pulley	Z 19
Pulley pitch diameter [mm]	60.48
Carriage displacement per pulley turn [mm]	190
Carriage weight [kg]	8.6
Zero travel weight [kg]	32
Weight for 100 mm useful stroke [kg]	2.2
Starting torque [Nm]	4.5
Moment of inertia of pulleys [g mm²]	210300
Rail size [mm]	Ø16
*1) It is possible to obtain strokes up to 11000 mm by means of special Rollon	joints Tab. 82

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

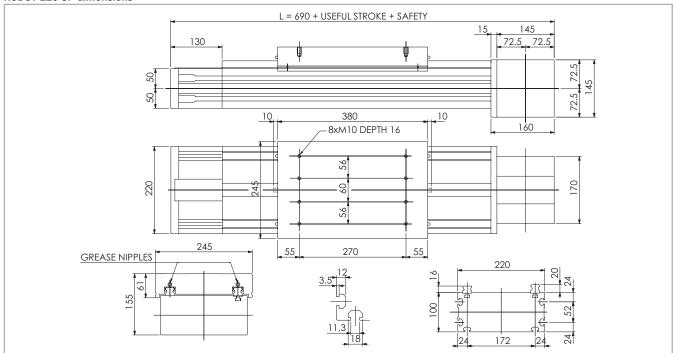

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm ⁴]
R0B0T 160	0.37	1.51	1.88
			Tab. 83

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ROBOT 160 CE-2C	32 AT 10	32	0.185
			Tab. 84

Belt length (mm) = $2 \times L - 130$ Two belts for each actuator.


ROBOT 160 CE-2C - Load capacity

Туре	F _x [N]		F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 160 CE-2C	2258	1795	15538	35366	8585	1053	653	1507

See verification under static load and lifetime on page SL-2 and SL-3

ROBOT 220 SP

ROBOT 220 SP dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

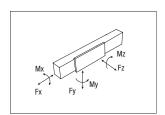
Fig. 36

Technical data

	Туре
	ROBOT 220 SP
Max. useful stroke length [mm]*1	5900
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s²]	50
Type of belt	100 AT 10
Type of pulley	Z 25
Pulley pitch diameter [mm]	79.58
Carriage displacement per pulley turn [mm]	250
Carriage weight [kg]	14.4
Zero travel weight [kg]	41
Weight for 100 mm useful stroke [kg]	2.5
Starting torque [Nm]	6.4
Moment of inertia of each pulley [g mm²]	4.114 · 10 ⁶
Rail size [mm]	25
1) It is possible to obtain strokes up to 11000 mm by means of special Rollon	joints Tab. 8

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

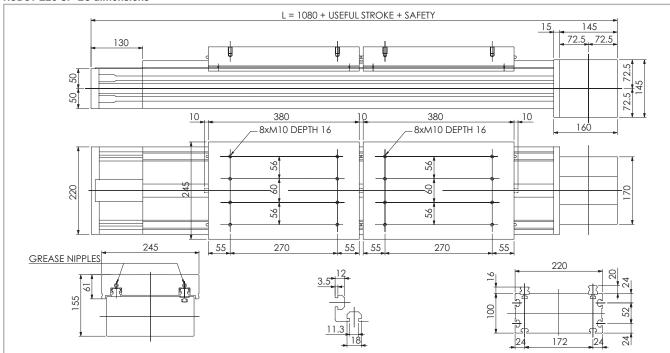

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm ⁴]
R0B0T 220	0.65	3.26	3.92
			Tab. 87

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R0B0T 220 SP	100 AT 10	100	0.58
			Tab. 88

Belt length (mm) = $2 \times L - 120$



ROBOT 220 SP - Load capacity

Туре	F _x [N]		F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 220 SP	9545	6325	258800	116833	258800	22257	28986	28986

■ ROBOT 220 SP-2C DOUBLE INDEPENDENT CARRIAGES

ROBOT 220 SP-2C dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 37

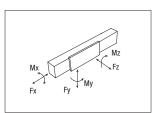
Technical data

	Туре
	R0B0T 220 SP-2C
Max. useful stroke length [mm]*1	5510
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	40 AT 10
Type of pulley	Z 25
Pulley pitch diameter [mm]	79.58
Carriage displacement per pulley turn [mm]	250
Carriage weight [kg]	13.3
Zero travel weight [kg]	46
Weight for 100 mm useful stroke [kg]	2.5
Starting torque [Nm]	6.4
Moment of inertia of pulleys [g mm²]	$2.026 \cdot 10^{6}$
Rail size [mm]	25
*1) It is possible to obtain strokes up to 11000 mm by means of special Rollon jo	ints Tab. 90

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints

Moments of inertia of the aluminum body

Туре	I _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm⁴]
R0B0T 220	0.65	3.26	3.92
			Tab. 91


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ROBOT 220 SP-2C	40 AT 10	40	0.23

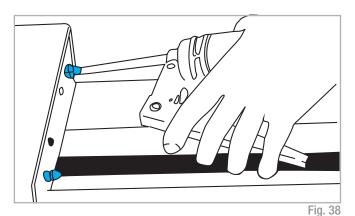
Tab. 92

Belt length (mm) = $2 \times L - 120$ Two belts for each actuator.

ROBOT 220 SP-2C - Load capacity

Туре	F _x [N]		F [!	: Ň]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 220 SP-2C	3818	2530	258800	116833	258800	22257	28986	28986

^{*2)} Positioning repeatability is dependent on the type of transmission used


Lubrication

SP linear units with ball bearing guides

SP Linear units are equipped with self lubricating linear ball guides.

The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

Special lubrication reservoirs are mounted on the front plates of the linear blocks which continuously provide the necessary amount of grease to the ball raceways under load. These lubrication reservoirs also considerably reduce the frequency of lubrication of the module. This system guarantees

- Insert grease gun in the specific grease nipples.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or difficult environemental condi-

a long interval between maintenances: SP version: every 5000 km or 1 year of use, based on the value reached first. If a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

Linear units type CE with gothic arch bearing guides

Linear units with gothic arch bearing guides are equipped with along period lubrication system. Four grease impregnated felt scrapers, complete with grease reservoirs, guarantee a service life of ca. 6000 km without relubrication. If relubrication is required to obtain a higher service life please contact our offices.

Quantity of lubricant necessary for re-lubrication of each block:

Туре	Unit: [cm³]
ROBOT 100 SP	0.7
ROBOT 130 SP	0.7
R0B0T 160 SP	1.4
ROBOT 220 SP	2.4

Tab. 94

tions, lubrication should be carried out more frequently. Apply to Rollon for further advice.

Planetary gears

Assembly to the right or to the left of the driving head

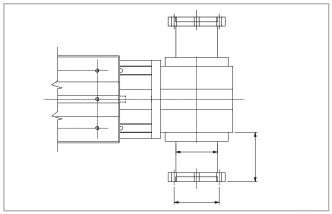


Fig. 39

The series Robot linear units can be fitted with several different drive systems. In each case, the driving pulley is attached to the reduction gear-shaft by means of a tapered coupling to ensure high accuracy over a long period of time.


Versions with planetary gears

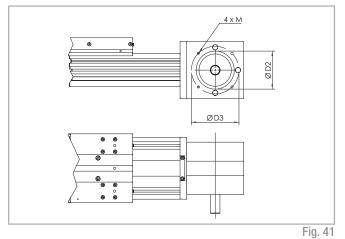
Planetary gears are used for highly dynamic robot, automation and handling applications involving stressing cycles and with high level precision requirements. Standard models are available with clearance from 3' to 15' and with a reduction ratio from 1:3 to 1:1000. For assembly of non-standard planetary gear, contact our offices.

Туре	Left	Right	Gear type
Robot 100	4E	4C	MP 060
Robot 130	4E	4C	MP 080
Robot 130	6E	6C	MP 105
Robot 160	4E	4C	MP 105
Robot 220	4E	4C	MP 105
Robot 220	6E	6C	MP 130

Simple shaft version

Simple shaft type AS

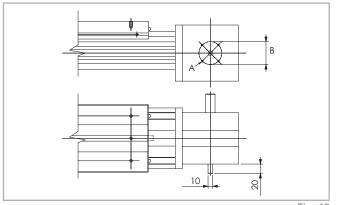
Unit	Shaft type	В	D1
R0B0T 100	AS 15	35	15h7
R0B0T 130	AS 20	40	20h7
R0B0T 160	AS 25	50	25h7
R0B0T 220	AS 25	50	25h7


Tab. 96

Position of the simple shaft can be to the right, left, or both sides of the drive head.

Unit	Shaft type	Head code AS left	Head code AS right	Head code double AS	
R0B0T 100	AS 15	1E	1C	1A	
R0B0T 130	AS 20	1E	1C	1A	
R0B0T 160	AS 25	1E	1C	1A	
R0B0T 220	AS 25	1E	1C	1A	

Tab. 97


AS with centering rings

Unit	Shaft type	D2	D3	M	Head code AS right	Head code AS left
R0B0T 100	AS 15	80	100	M6	VL	VM
R0B0T 130	AS 20	80	100	M6	TC	TD
R0B0T 160	AS 25	110	130	M8	UB	UC
R0B0T 220	AS 25	110	130	M8	VP	VQ

Tab. 98

Simple shaft type AE 10 for encoder assembly + AS

Unit	А	В	Head code AS right + AE	Head code AS left + AE
R0B0T 100	4xM4	Ø49	1G	11
R0B0T 130	4xM4	Ø79	1G	11
R0B0T 160	4xM4	Ø76	1G	11
R0B0T 220	4xM4	Ø76	1G	11

Tab. 99

Position of the simple shafts for encoder assembly to the right or to the left on the driving head.

Hollow shafts

AC hollow shaft type

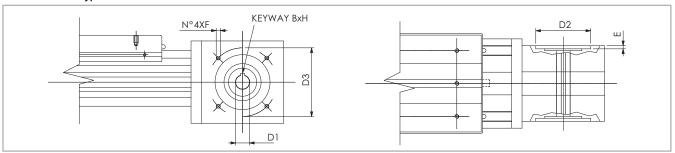


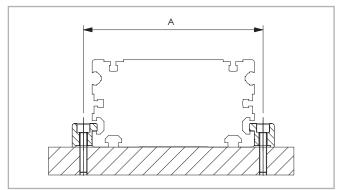
Fig. 43

Unit mm

Appliable to unit	Shaft type	D1	D2	D3	Е	F	Keyway B x H	Head code
R0B0T 100	AC19	19H7	80	100	3	M6	6 x 6	2A
R0B0T 130	AC19	19H7	80	100	4.5	M6	6 x 6	2A
R0B0T 130	AC20	20H7	80	100	4.5	M6	6 x 6	20
R0B0T 130	AC25	25H7	110	130	4.5	M8	8 x 7	2E
R0B0T 160	AC25	25H7	110	130	4.5	M8	8 x 7	2A
R0B0T 160	AC32	32H7	130	165	4.5	M10	10 x 8	20
R0B0T 220	AC25	25H7	110	130	4.5	M8	8 x 7	2A
R0B0T 220	AC32	32H7	130	165	4.5	M10	10 x 8	20

Tab. 100

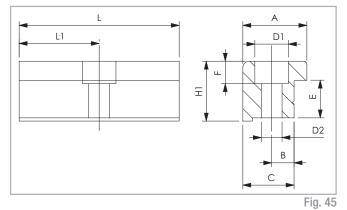
An (optional) connection flange is required to fit the standard reduction units selected by Rollon.


For further informations contact our offices

Accessories

Fixing by brackets

The linear motion systems used for the Rollon series ROBOT linear units enable support of loads in any direction. They can therefore be installed in any position.


To install the units, we recommend the use of the dedicated T-slots in the extruded bodies as shown below.

Unit	A (mm)
R0B0T 100	112
R0B0T 130	144
R0B0T 160	180
R0B0T 220	240
	Tab. 101

Fig. 44

Fixing brackets

Anodised aluminum block for fixing the linear units through the side T-slots of the body.

Fixing by T-nuts

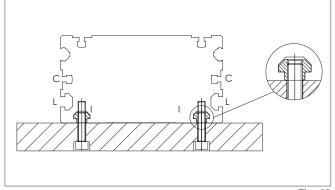
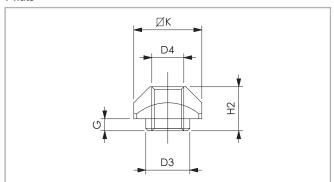


Fig. 46

Warning:


Do not fix the linear units through the drive ends.

Dimensions (mm)

Unit	А	В	С	E	F	D1	D2	H1	L	Lt	Code
ROBOT 100	20	6	16	10	5.5	9.5	5.3	14	35	17.5	1000958
R0B0T 130	20	7	16	12.7	7	10.5	6.5	18.7	50	25	1001061
ROBOT 160	36.5	10	31	18.5	10.5	16.5	10.5	28.5	100	50	1001233
R0B0T 220	36.5	10	31	18.5	10.5	16.5	10.5	28.5	100	50	1001233

Tab. 102

T-nuts

L=Side / C=Central / I=Lower - see fig. 45

Steel nuts to be used in the slots of the body.

Dimensions (mm)

•	,						
Unit		D3	D4	G	H2	K	Code
R0B0T 100	L-I	-	M4	-	3.4	8	1001046
R0B0T 130	С	-	M3	-	4	6	1001097
R0B0T 130	L-I	8	M6	3.3	8.3	13	1000043
R0B0T 160	С	-	M6	-	5.8	13	1000910
R0B0T 160	I	8	M6	3.3	8.3	13	1000043
R0B0T 160	L	11	M8	2.8	10.8	17	1000932
R0B0T 220	L-I	11	M8	2.8	10.8	17	1000932

Fig. 47

Proximity ROBOT...SP

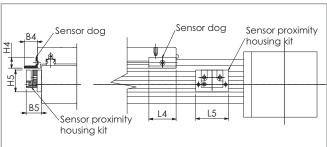


Fig. 48

Sensor proximity housing kit

Red anodized aluminum sensor holder, equipped with T-nuts for fixing into the body slots.

Sensor dog

L-shaped bracket in zinc-plated iron, mounted on the carriage and used for proximity switch operations.

Dimensions (mm)

Unit	В4	B5	L4	L5	H4	Н5	For proximity	Sensor dog code	Sensor proximity housing kit code
ROBOT 100 SP	9.5	20	25	45	12	25	Ø 8	G000268	G000092
ROBOT 130 SP	21	28	50	60	20	40	Ø 12	G000269	G000126
ROBOT 160 SP	21	28	50	64	20	40	Ø 12	G000269	G000123
R0B0T 220 SP	21	28	50	70	20	40	Ø 12	G000269	G000207

Tab. 104

Warning:

If a bellow is used, it is not possible to assemble the proximity switch holders to the aluminum body.

Proximity ROBOT...CE

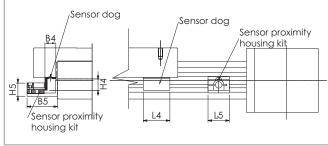


Fig. 49

Sensor proximity housing kit

Red anodized aluminum sensor holder, equipped with T-nuts for fixing into the body slots.

Sensor dog

L-shaped bracket in zinc-plated iron, mounted on the carriage and used for proximity switch operations.

Dimensions (mm)

Unit	B4	B5	L4	L5	H4	Н5	For proximity	Sensor dog code	Sensor proximity housing kit code
ROBOT 100 CE	9.5	47	25	29	12	20	Ø 8	G000268	G000756
ROBOT 130 CE	21	57	50	40	20	25	Ø 12	G000269	G000125
R0B0T 160 CE	21	57	50	40	20	28.5	Ø 12	G000269	G000124

Tab. 105

Warning:

If a bellow is used, it is not possible to assemble the proximity switch holders to the aluminum body.

Protections

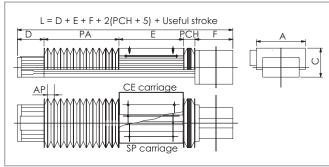


Fig. 50

Standard protections

The Rollon series ROBOT linear units are equipped with a polyurethane sealing strip to protect all parts inside the body against dust and foreign matter. The sealing strip runs the length of the body and is kept in position by micro-bearings located within the carriage. This ensures very low frictional resistance as it passes through the carriage.

Dimensions (mm)

Unit	А	С	D	E	F
R0B0T 130	174	103	95	230	135
R0B0T 160	204	131.5	110	280	160
R0B0T 220	275	149.5	130	380	160

Tab. 106

Protection of ball bearing guides

The four ball bearing blocks have seals on both sides and, where necessary, an additional scraper can be fitted for very dusty conditions.

Special protection

To use these linear units in very critical environments, they can be fitted with a bellows system in addition to the standard protection. The bellows is fixed to the carriage and the ends of the body with Velcro tape for easy assembly and disassembly.

The total length (L) of the linear unit will vary:

See Fig. 50.

Standard material: Thermally welded nylon coated with polyurethane **Materials on demand:** Nylon coated with PVC, fiberglass, stainless steel **Warning:** The use of bellows does not allow the assembly of the proximity switch holders to the aluminum body.

Assembly kits

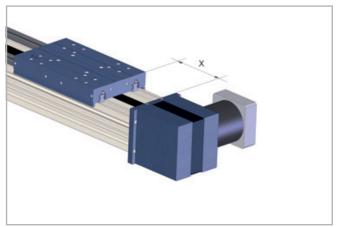
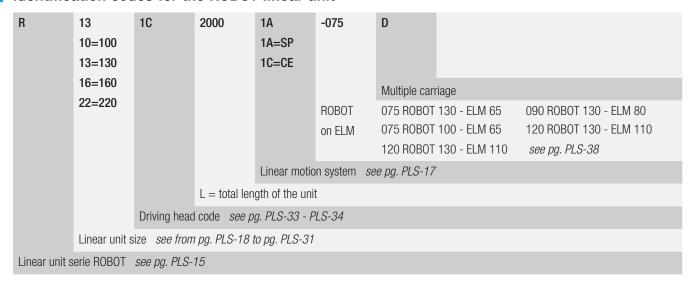


Fig. 51

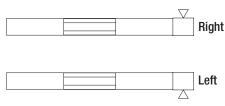
Fig. 52


For the direct assembly of Robot linear units on other types of actuators Rollon offers dedicated assembly kits (brackets) in order to fix those brackets the ends of the actuator must be free of rails. The table below gives the codes of the assembly kit. The allowed combination of assembly as well as the length without rails at each end.

	Kit	Code	X No rail at each end (mm)
1-	ROBOT 100 - ELM 65	G000205	75
	ROBOT 100 - ROBOT 130	G000201*	155
In	R0B0T 100 - EC0 80	G000203	90
	R0B0T 100 - E-SMART 50	G000642	60
1-	ROBOT 130 - ELM 65	G000196	75
	ROBOT 130 - ELM 80	G000195	90
	ROBOT 130 - ROBOT 130	G000197*	155
	ROBOT 130 - ROBOT 160	G000197*	190
	ROBOT 160 - ELM 80	G000204	90
1-	ROBOT 160 - ELM 110	G000452	120
	ROBOT 160 - ROBOT 160	G000202*	190
	ROBOT 160 - ROBOT 220	G000202*	255
1-	R0B0T 220 - ELM 110	G000199	120
* Additional fixing balon or	a requested on the rebet plate		Tah 107

 $^{^{\}star}\,\mbox{Additional fixing holes}$ are requested on the robot plate

Ordering key V


Identification codes for the ROBOT linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

SC series /

SC series description

Fig. 53

SC

The SC series linear units are specifically designed for vertical motion in gantry applications, or in applications where the aluminum profile must move while the carriage remains fixed.

Available in three sizes: 65 mm, 130 mm and 160 mm, the SC linear actuator has a self-supporting structure made by a profile (square profile for SC 65) of extruded and anodized aluminum.

The SC is a stiff vertical system, guaranteed by the use of two parallel linear guides, four "maintenance-free" caged ball bearing blocks and a wide belt drive.

The SC Series has been designed for heavy loads and high cycle applications. It is specifically designed and configured to be compatible and assembled with the ROBOT Series actuators without the need for adaptor plates.

Corrosion resistant version

All Plus System series of linear actuators are available with stainless steel elements, for applications in harsh environments and/or subject to frequent washes.

The Plus System linear units are constructed using extruded anodized 6060 and 6082 Anti-Corrosive Aluminum, which houses bearings, linear rails, nuts and bolts and components, all of which are made of low carbon SS AISI 303 and 404C steel, to prevent or delay corrosion caused by humidity experienced in the environments where the linear units are used.

Special no-deposit surface treatments are combined with a food grade lubrication system to allow use in highly sensitive applications, such as the food and pharmaceutical industries where product contamination is prohibited.

- Internal stainless steel elements
- Anodized 6060 and 6082 Anti-Corrosive Aluminum Profile
- Very low carbon SS AISI 303 and 404C steel linear rails, nuts and bolts and components
- Lubricated with organic food grade vegetable oils

The components

Extruded profile

The anodized aluminum extrusions used for the profile of the Rollon SC series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. The anodized aluminum alloy 6060 used (see physical-chemical characteristics below) was extruded with dimensional tolerances complying with EN 755-9 standards.

Side slots are provided for fast, trouble-free mounting of accessories (proximity switch runner, etc.). Power cables and/or air hoses (gripper, etc.) can be passed inside the body.

Driving belt

The Rollon SC series linear units use steel reinforced polyurethane drive belt with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a

backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

The carriage is an enveloping structure that houses the entire linear motion system consisting of a drive pulley and two driven pulleys. The external parts are made of anodized aluminum. Dimensions vary according to type. One of the two configurations shown on page PLS-48 can be used for fast, simple assembly of the SC series. The carriage also houses brush seals to remove contaminants from the system.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 108

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	Ω . m . 10^{-9}	°C
dm ³	mm ²	K	m . K	kg . K	22 . 111 . 10	O
2.7	69	23	200	880-900	33	600-655

Tab. 109

Mechanical characteristics

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

SC series with ball bearing guides

- Two ball bearing guides with high load capacity are mounted in two dedicated seats on the outer sides of the aluminum body.
- The carriage of the linear unit is assembled on four pre-loaded ball bearing blocks with plastic retention cages.
- The four ball row configuration enables the carriage to withstand loading in the four main directions.
- The four blocks have seals on both sides and, where necessary, an additional scraper can be fitted for very dusty conditions.
- Lubrication reservoirs (pockets) installed on the front of the ball bearing blocks supply the right amount of grease, thus promoting long maintenance intervals.

The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Low noise
- Free maintenance (dependent on application)

SC section

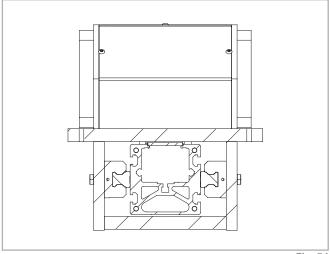
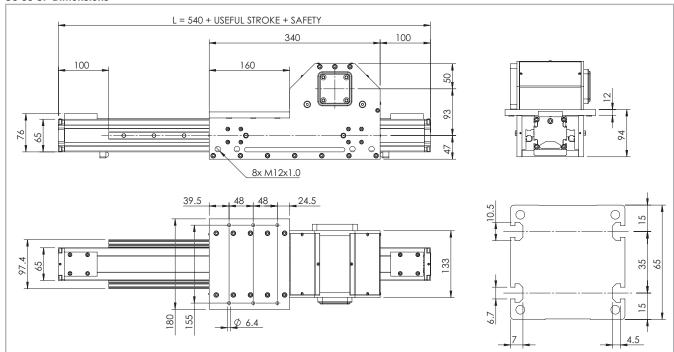



Fig. 54

SC 65 SP

SC 65 SP Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 55

Technical data

	Туре
	SC 65 SP
Max. useful stroke length [mm]	1500
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s²]	50
Type of belt	32 AT 5
Type of pulley	Z 32
Pulley pitch diameter [mm]	50.93
Carriage displacement per pulley turn [mm]	160
Carriage weight [kg]	7.8
Zero travel weight [kg]	11.6
Weight for 100 mm useful stroke [kg]	0.7
Starting torque [Nm]	1.3
Rail size [mm]	15

^{*1)} Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm ⁴]
SC 65	0.06	0.09	0.15
			Tab. 112

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

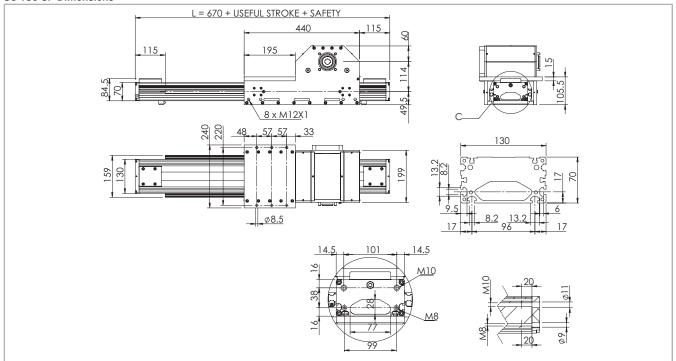
Туре	Type of belt	Belt width [mm]	Weight [kg/m]
SC 65	32 AT 5	32	0.105

Belt length (mm) = L + 85

Fx Axial Fz Radial Mz Tangential My

SC 65 SP - Load capacity

Туре	F [I	: × V]	F [t	: vj	F _z [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
SC 65 SP	1344	883	96800	45082	96800	3775	11616	11616


Tab. 111

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 114

SC 130 SP

SC 130 SP Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

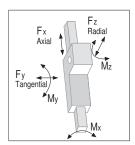
Fig. 56

Technical data

	Туре
	SC 130 SP
Max. useful stroke length [mm]	2000
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	50 AT 10
Type of pulley	Z 20
Pulley pitch diameter [mm]	63.66
Carriage displacement per pulley turn [mm]	200
Carriage weight [kg]	13.5
Zero travel weight [kg]	23
Weight for 100 mm useful stroke [kg]	1.4
Starting torque [Nm]	3
Rail size [mm]	15
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 115

^{*1)} Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body


Туре	_x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
SC 130	0.15	0.65	0.79
			Tab. 116

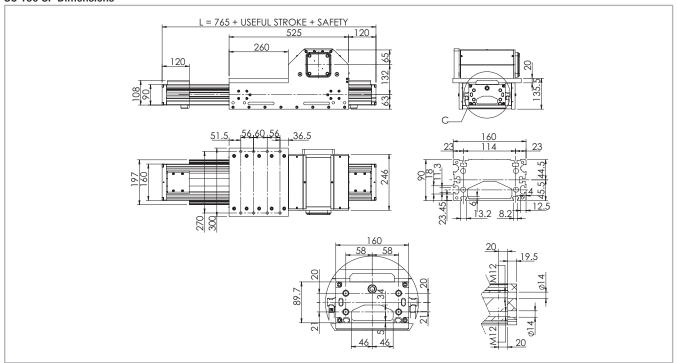
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type	Belt width	Weight
	of belt	[mm]	[kg/m]
SC 130	50 AT 10	50	0.209

Belt length (mm) = L + 101

SC 130 SP - Load capacity


Туре	F _x [N]		F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
SC 130 SP	3735	2160	96800	45082	96800	6921	16311	16311

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 118

SC 160 SP

SC 160 SP Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 57

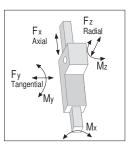
Technical data

	Туре		
	SC 160 SP		
Max. useful stroke length [mm]	2500		
Max. positioning repeatability [mm]*1	± 0.05		
Max. speed [m/s]	5.0		
Max. acceleration [m/s²]	50		
Type of belt	70 AT 10		
Type of pulley	Z 25		
Pulley pitch diameter [mm]	79.58		
Carriage displacement per pulley turn [mm]	250		
Carriage weight [kg]	32		
Zero travel weight [kg]	48		
Weight for 100 mm useful stroke [kg]	1.9		
Starting torque [Nm]	6.1		
Rail size [mm]	20		
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 119		

^{*1)} Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	I _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]	
SC 160	0.37	1.50	1.88	
			Tab. 120	


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type	Belt width	Weight
	of belt	[mm]	[kg/m]
SC 160	70 AT 10	70	0.407

Tab. 121

Belt length (mm) = L + 121

SC 160 SP - Load capacity

Туре	F _x [N]		F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
SC 160 SP	6682	4428	153600	70798	153600	13555	31104	31104

See verification under static load and lifetime on page SL-2 and SL-3

Lubrication

SP linear units with ball bearing guides

SP Linear units are equipped with self lubricating linear ball guides. The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

Special lubrication reservoirs are mounted on the front plates of the linear blocks which continuously provide the necessary amount of grease to the

ball raceways under load. These lubrication reservoirs also considerably reduce the frequency of lubrication of the module. This system guarantees a long interval between maintenances: SP version: every 5000 km or 1 year of use, based on the value reached first. If a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

Quantity of lubricant necessary for re-lubrication of each block:

Туре	Unit: [cm²]
SC 65	0.7
SC 130	0.7
SC 160	1.4

Tab. 123

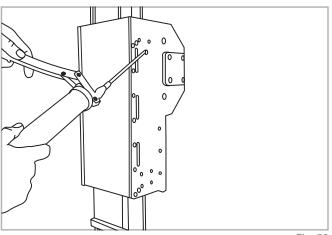


Fig. 58

- Insert the tip of the grease gun in the specific grease blocks.
- For lubrication of linear units use lithium soap grease NLGI 2.
- For specially stressed applications or difficult environmental

conditions, lubrication should be carried out more frequently. Refer to Rollon for further advice.

Planetary gears

Assembly to the right or to the left of the driving head

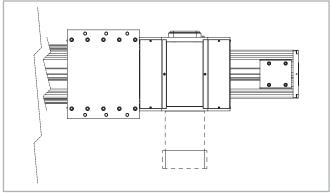
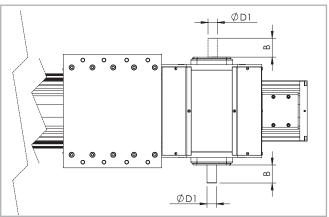


Fig. 59

Motion can be achieved with standard transmission types as follows:

- Planetary gears
- Worm gears
- Versions with simple shaft
- Versions with hollow shaft


Versions with planetary gears

Planetary gears are used for highly dynamic robot, automation and handling applications involving stressing cycles and with high level precision requirements. Standard models are available with a clearance ranging from 3' to 15' and with a reduction ratio from 1:3 to 1:1000. For assembly of non-standard planetary gear, contact our offices.

Туре	Left	Right	Gear type
SC 65	4EA	4CA	MP 080
SC 130	4EA	4CA	MP 105
SC 160	4EA	4CA	MP 130
			T 1 404

Simple shaft version

Simple shaft type AS

Unit	Shaft type	В	D1
SC 65	AS 20	40	20h7
SC 130	AS 25	50	25h7
SC 160	AS 25	50	25h7

Tab. 125

Fig. 60

Position of the simple shaft can be to the left or right of the drive head.

Unit	Shaft type	Head code AS left	Head code AS right	Head code double AS	
SC 65	AS 20	1EA	1CA	1AA	
SC 130	AS 25	1EA	1CA	1AA	
SC 160	AS 25	1EA	1CA	1AA	

Tab. 126

Hollow shafts

AC hollow shaft type

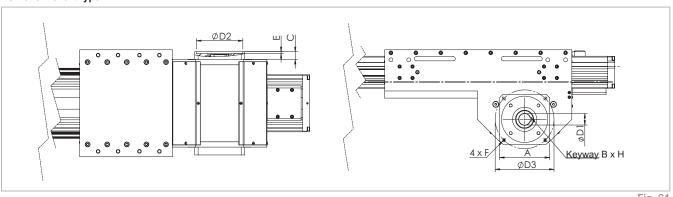


Fig. 61

Unit mm

Appliable to unit	Shaft type	D1	D2	D3	A	С	E	F	Keyway B x H	Head code
SC 65 SP	AC 19	19H7	80	100	90	13	3	M6	6 x 6	2AA
SC 65 SP	AC 20	20H7	80	100	90	13	3	M6	6 x 6	2BA
SC 130 SP	AC 20	20H7	80	100	115	19	4.5	M6	6 x 6	2AA
SC 130 SP	AC 25	25H7	110	130	115	19	4.5	M8	8 x 7	2BA
SC 160 SP	AC 32	32H7	130	165	140	22	5.5	M10	10 x 8	2AA

Tab. 127

An (optional) connection flange is required to fit the standard reduction units selected by Rollon.

For further information contact our offices

Accessories

Fixing by brackets

The ball bearing guide linear drive systems of Rollon SC series linear units enable support of loads in any direction. They can therefore be installed in any position. To install the SC series units, we recommend use of one of the two systems indicated below:

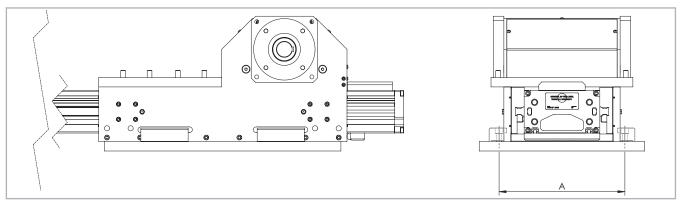
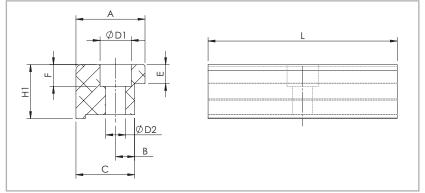



Fig. 62

Fixing brackets

Material: Anodized aluminum

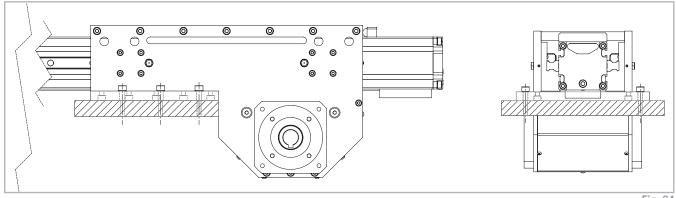
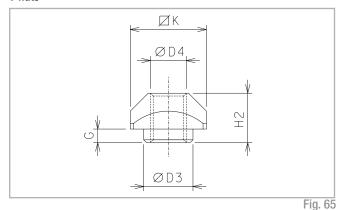

Unit	A (mm)
SC 65 SP	147
SC 130 SP	213
SC 160 SP	266
	Tab. 128

Fig. 63

Unit	А	В	С	Е	F	D1	D2	H1	L	Code
SC 65 SP	20	6	16	10	5.5	9.5	5.3	14	35	1001491
SC 130 SP	20	7	16	12.7	7	10.5	6.5	18.7	50	1001491
SC 160 SP	36.5	10	31	18.5	10.5	16.5	10.5	28.5	100	1001233


Tab. 129

Direct fixing

PLS-48 Fig. 64

T-nuts

Steel nuts to be used in the slots of the body

Fixing by T-nuts

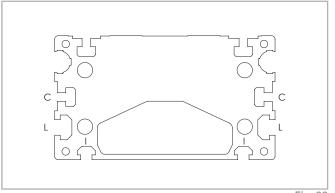
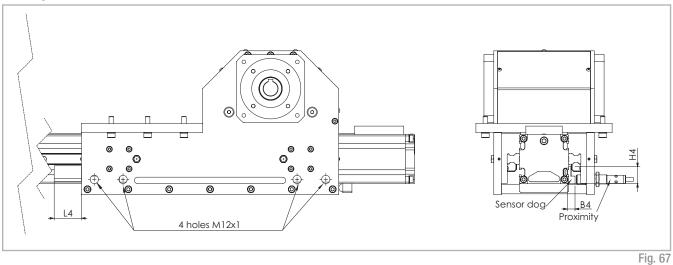


Fig. 66

Warning:


Do not fix the linear units through the drive ends.

Unit	Slot	D3	D4	G	H2	К	Code
SC 65	L	6.7	M5	2.3	6.5	10	1000627
SC 130	L-I	8	M6	3.3	8.3	13	1000043
SC 130	С	-	M3	-	4	6	1001097
SC 160	I	8	M6	3.3	8.3	13	1000043
SC 160	L	11	M8	2.8	10.8	17	1000932
SC 160	С	-	M6	-	5.8	13	1000910

L = Side - I = Lower - C=Central

Tab. 130

Proximity

Fitting of the proximity switch

Proximity switches can be mounted on four threaded mounting holes that are positioned on the sides of the carriage. Do not over-torque the switches during installation as this can cause interference with the proximity switch runner and damage the sensor.

L-shaped bracket in zinc-plated iron, mounted on the carriage and used for proximity switch operations.

Unit	В4	Н4	L4	Sensor dog Code
SC 65	8.5	23	50	G001997
SC 130	8.4	25	50	G001862
SC 160	10	27	50	G000272

Tab. 131

Protections

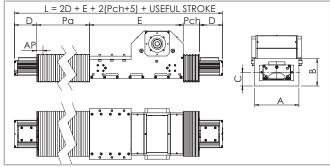


Fig. 68

Protection of ball bearing guides

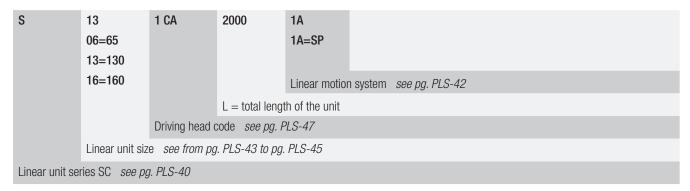
The four ball bearing blocks have seals on both sides and an additional scraper can be fitted for very dusty conditions.

Special protection

For use in hostile conditions, the SC can be fitted with a bellows system in addition to the standard protection. The bellows is fixed to the carriage and drive ends with hook and loop fasteners for ease of assembly and disassembly.

The total length (L) of the linear unit will vary: See Fig. 68.

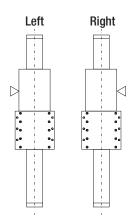
Dimensions (mm)


Unit	А	В	С	D	E
SC 65	135	109	54,5	100	340
SC 130	212	130	64	115	440
SC 160	248	150	73	120	525

Tab. 132

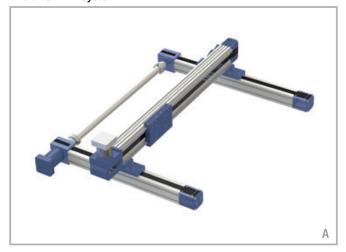
Standard material: Thermally welded nylon coated with polyurethane **Materials on demand:** Nylon coated with PVC, fiberglass, stainless steel **Warning:** The use of bellows does not allow the assembly of the proximity switch holders to the aluminum body.

Ordering key / ~


Identification codes for the SC linear unit

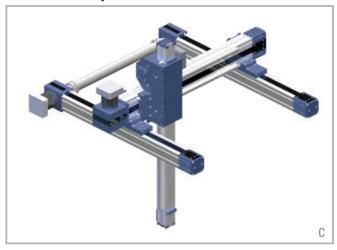
In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation


Multiaxis systems // V

Previously, customers wishing to build multiaxis units have had to design, draw and manufacture all the elements necessary to assemble two or more axis. Rollon now offers a set of fittings including brackets and cross plates, to enable multiaxis units to be built. The SC series is also pre-

engineered to facilitate direct connection with the units of the ROBOT series. In addition to standard elements, Rollon also provides plates for special applications.


Application examples:

Two axis - X-Y system

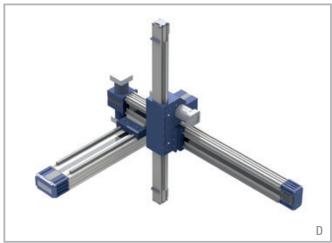
A - Linear units: X axis: 2 ELM 80 SP... Y axis: 1 ROBOT 160 SP... Connection part: 2 kits of fixing brackets for ROBOT 160 SP... on to the carrieages of ELM 80 SP...

Three axis - X-Y-Z system

C - Linear units: X axis: 2 ELM 65 SP... Y axis: 1 ROBOT 130 SP...Z axis: 1 SC 65Connection part: 2 kits of fixing brackets for ROBOT 130 SP... on to

Connection part: 2 kits of fixing brackets for ROBOT 130 SP... on to the carrieages of ELM 65 SP... The SC 65 unit is directly assembled on to the ROBOT 130 SP... unit without further elements.

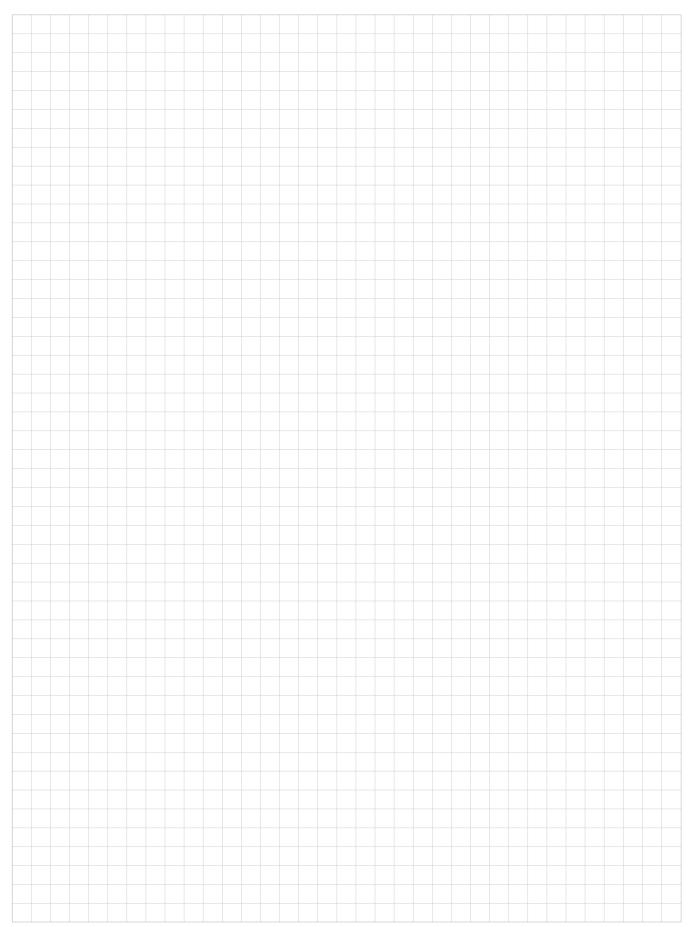
Two axis - Y-Z system



B - Linear units: X axis: 1 ROBOT 220 SP... Z axis: 1 SC 160

Connection part: None

The SC 160 unit is directly assembled on to the ROBOT 220 SP... unit without further elements


Three axis - X-Y-Z system

D - Linear units: X axis: 1 ROBOT 220 SP... Y axis: 1 ROBOT 130 SP... Z axis: SC 65

Connection part: 1 kit of fixing brackets for ROBOT 130 SP... unit to the carriage of the ROBOT 220 SP... unit. The SC 65 unit is directly assembled on to the ROBOT 130 SP... unit without further elements.

Notes / ~

Static load and service life

Static load

In the static load test, the radial load rating F_{v} , the axial load rating F_{z} , and the moments M_v , M_v und M_z indicate the maximum allowed load values. Higher loads will impair the running characteristics. To check the static load, a safety factor $S_{\scriptscriptstyle 0}$ is used, which accounts for the special conditions of the application defined in more detail in the table below:

All load capacity values refer to the actuator well fixed to a rigid structure. For cantilever applications the deflection of the actuator profile must be taken in account.

Safety factor S_o

No shocks or vibrations, smooth and low-frequency change in direction High mounting accuracy, no elastic deformations, clean environment	2 - 3
Normal assembly conditions	3 - 5
Shocks and vibrations, high-frequency changes in direction, substantial elastic deformations	5 - 7

Fig. 1

The ratio of the actual to the maximum allowed load must not be higher than the reciprocal value of the assumed safety factor S_0 .

$$\frac{P_{fy}}{F_v} \le \frac{1}{S_0} \qquad \frac{P_{fz}}{F_z} \le \frac{1}{S_0}$$

$$\frac{P_{fz}}{F_{z}} \leq \frac{1}{S_{0}}$$

$$\frac{M_1}{M_x} \le \frac{1}{S_0}$$

$$\frac{M_2}{M_y} \le \frac{1}{S_0}$$

$$\frac{M_3}{M_z} \le \frac{1}{S_0}$$

Fig. 2

The above formulae only apply to a one load case. If one or more of the forces described are acting simultaneously, the following calculation must be carried out:

$$\frac{P_{fy}}{F_{y}} + \frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}} \le \frac{1}{S_{0}}$$

= acting load (y direction) (N)

= static load rating (y direction) (N)

= acting load (z direction) (N) = static load rating (z direction) (N)

 M_1 , M_2 , M_3 = external moments (Nm)

 M_{v} , M_{v} , M_{v} = maximum allowed moments in the different load directions (Nm)

The safety factor S_o can be at the lower limit given if the acting forces can be determined with sufficient accuracy. If shocks and vibrations act on the system, the higher value should be selected. In dynamic applications, higher safeties are required. For further information, please contact our Application Engineering Department.

Belt safety factor referred to the dynamic F_x

Impact and Speed / Orietation Safety vibrations acceleration **Factor** horizontal 1.4 No impacts Low and/or vibrations 1.8 vertical 1.7 Light impacts horizontal Medium and/or vibrations 2.2 vertical 2.2 Strong impacts horizontal High and/or vibrations vertical

Tab. 1

Fig. 3

Service life

Calculation of the service life

The dynamic load rating C is a conventional quantity used for calculating the service life. This load corresponds to a nominal service life of 100 km.

The calculated service life, dynamic load rating and equivalent load are linked by the following formula:

$$L_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

The effective equivalent load $P_{\rm eq}$ is the sum of the forces and moments acting simultaneously on a slider. If these different load components are known, P is obtained from the following equation:

For SP types

$$P_{eq} = P_{fy} + P_{fz} + (\frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Fig. 5

For CI and CE types

$$P_{eq} = P_{fy} + (\frac{P_{fz}}{F_z} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Fig. 6

The external constants are assumed to be constant over time. Short-term loads that do not exceed the maximum load ratings have no relevant effect on the service life and can therefore be neglected in the calculation.

Service factor f

f_i	
no shocks or vibrations, smooth and low-frequency changes in direction; ($\alpha < 5 \text{m/s}^2$) clean operating conditions; low speeds (<1 m/s)	1.5 - 2
Slight vibrations; medium speeds; (1-2 m/s) and medium-high frequency of the changes in direction (5m/s² < α < 10 m/s²)	2 - 3
Shocks and vibrations; high speeds (>2 m/s) and high-frequency changes in direction; (α > 10m/s²) high contamination, very short stroke	> 3

Tab. 2

Fig. 4

Speedy Rail A Lifetime

The rated lifetime for SRA actuators is 80,000 Km.

Static load and service life Uniline

Static load

In the static load test, the radial load rating F_y , the axial load rating F_z , and the moments M_x , M_y und M_z indicate the maximum allowed load values. Higher loads will impair the running characteristics. To check the static load, a safety factor S_0 is used, which accounts for the special conditions of the application defined in more detail in the table below:

Safety factor S_o

No shocks or vibrations, smooth and low-frequency change in direction High mounting accuracy, no elastic deformations, clean environment	1 - 1.5
Normal assembly conditions	1.5 - 2
Shocks and vibrations, high-frequency changes in direction, substantial elastic deformations	2 - 3.5

Fig. 7

The ratio of the actual to the maximum allowed load must not be higher than the reciprocal value of the assumed safety factor S_n .

$$\frac{P_{fy}}{F_{y}} \leq \frac{1}{S_{0}}$$

$$\frac{P_{fz}}{F_{z}} \leq \frac{1}{S_{0}}$$

$$\frac{M_1}{M_x} \le \frac{1}{S_0}$$

$$\frac{M_2}{M_y} \ \le \ \frac{1}{S_0}$$

$$\frac{M_3}{M_z} \le \frac{1}{S_0}$$

Fig. 8

The above formulae apply to a one load case. If one or more of the forces described are acting simultaneously, the following test must be carried out:

$$\frac{P_{fy}}{F_{y}} + \frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}} \leq \frac{1}{S_{0}}$$

 P_{fy} = acting load (y direction) (N)

= static load rating (y direction) (N)

 P_{fz} = acting load (z direction) (N)

 F_z = static load rating (z direction) (N)

 M_1 , M_2 , M_3 = external moments (Nm)

 M_x , M_y , M_z = maximum allowed moments

in the different load directions (Nm)

The safety factor $\mathbf{S}_{_{0}}$ can be at the lower limit given if the acting forces can be determined with sufficient accuracy. If shocks and vibrations act on the system, the higher value should be selected. In dynamic applications,

higher safeties are required. For further information, please contact our Application Engineering Department.

Fig. 9

Calculation formulae

Moments $\mathbf{M}_{_{\mathbf{V}}}$ and $\mathbf{M}_{_{\mathbf{Z}}}$ for linear units with long slider plate

The allowed loads for the moments M_y and M_z depend on the length of the slider plate. The allowed moments M_{zn} and M_{yn} for each slider plate length are calculated by the following formulae:

$$S_n = S_{min} + n \cdot \Delta S$$

$$M_{zn} = (1 + \frac{S_n - S_{min}}{K}) \cdot M_{z min}$$

$$M_{yn} = (1 + \frac{S_n - S_{min}}{K}) \cdot M_{y min}$$

 M_{zn} = allowed moment (Nm)

 $M_{z min} = minimum values (Nm)$

 M_{vn} = allowed moment (Nm)

 $M_{y min} = minimum values (Nm)$

 S_n = length of the slider plate (mm)

 S_{min} = minimum length of the slider plate (mm)

 ΔS = factor of the change in slider length

K = constant

Fig. 10

Туре	M _{y min}	M _{z min}	S _{min}	ΔS	К
	[Nm]	[Nm]	[mm]		
A40L	22	61	240		74
A55L	82	239	310		110
A75L	287	852	440		155
C55L	213	39	310		130
C75L	674	116	440	10	155
E55L	165	239	310		110
E75L	575	852	440		155
ED75L (M _z)	1174	852	440		155
ED75L (M _y)	1174	852	440		270

Moments M_v and M_z for linear units with two slider plates

The allowed loads for the moments M_y and M_z are related to the value of the distance between the centers of the sliders. The allowed moments M_{yn} and M_{zn} for each distance between the centers of the sliders are calculated by the following formulae:

$$L_n = L_{min} + n \cdot \Delta L$$

$$M_{_{\boldsymbol{y}}}=(\frac{L_{_{\boldsymbol{n}}}}{L_{_{\boldsymbol{min}}}})\cdot M_{_{\boldsymbol{y}\,\boldsymbol{min}}}$$

$$M_z = (\frac{L_n}{L_{min}}) \cdot M_{z \, min}$$

 $M_v = allowed moment (Nm)$

M₂ = allowed moment (Nm)

 $M_{v min} = minimum values (Nm)$

 $M_{z min} = minimum values (Nm)$

 L_n = distance between the centers of the sliders (mm)

 L_{min} = minimum value for the distance between the centers of the sliders (mm)

 ΔL = factor of the change in slider length

Fig. 11

Туре	M _{y min}	M _{z min}	L _{min}	ΔL
	[Nm]	[Nm]	[mm]	
A40D	70	193	235	5
A55D	225	652	300	5
A75D	771	2288	416	8
C55D	492	90	300	5
C75D	1809	312	416	8
E55D	450	652	300	5
E75D	1543	2288	416	8
ED75D	3619	2288	416	8

Tab. 4

Service life

Calculation of the service life

The dynamic load rating C is a conventional quantity used for calculating the service life. This load corresponds to a nominal service life of 100 km. The corresponding values for each liner unit are listed in Table 45 shown

below. The calculated service life, dynamic load rating and equivalent load are linked by the following formula:

$$L_{km} = 100 \text{ km} \cdot (\frac{C}{P} \cdot \frac{f_c}{f_i} \cdot f_h)^3$$

C = dynamic load rating (N)
P = acting equivalent load (N) f_i = service factor (see tab. 5) f_c = contact factor (see tab. 6) f_b = stroke factor (see fig. 13)

L_{km} = theoretical service life (km)

Fig. 12

The effective equivalent load P is the sum of the forces and moments acting simultaneously on a slider. If these different load components are known, P is obtained from the following equation:

$$P = P_{fy} + (\frac{P_{fz}}{F_Z} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Fig. 13

The external constants are assumed to be constant over time. Short-term loads that do not exceed the maximum load ratings have no relevant effect on the service life and can therefore be neglected in the calculation.

Service factor f_i

f_{i}	
No shocks or vibrations, smooth and low-frequency changes in direction; clean operating conditions; low speeds (<1 m/s)	1 - 1.5
Slight vibrations; medium speeds; (1-2,5 m/s) and medium-high frequency of the changes in direction	1.5 - 2
Shocks and vibrations; high speeds (>2.5 m/s) and high-frequency changes in direction; high contamination	2 - 3.5

Tab. 5

Contact factor f

f _c	
Standard slider	1
Long slider	0.8
Double slider	0.8

Tab. 6

Stroke factor f,

The stroke factor f_h accounts for the higher stress on the raceways and rollers when short strokes are carried out at the same total run distance. The following diagram shows the corresponding values (for strokes above 1 m, f_h remains 1):

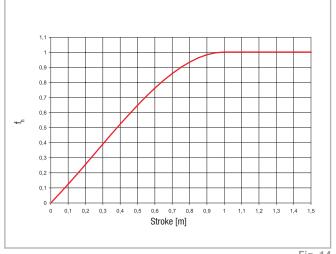


Fig. 14

Determination of the motor torque

The torque \mathbf{C}_{m} required at the drive head of the linear axis is calculated by the following formula:

$$C_m = C_v + (F \cdot \frac{D_p}{2})$$

 C_m = torque of the motor (Nm)

C_v = starting torque (Nm)

F = force acting on the toothed belt (N)

D_n = pitch diameter of pulley (m)

Warnings and legal notes

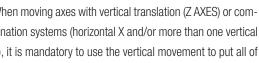
Before incorporating the partly completed machinery, we recommend consulting this chapter carefully, in addition to the assembly manual supplied with the individual modules. The information contained in this chapter and in the manuals for the individual modules, is provided by highly qualified and certified personnel, possessing adequate competence in incorporating the partly completed machinery.

The manufacturer cannot be considered responsible for any consequences derived from improper use or any use other than the purpose the axis or system of axes was designed for, or derived from failure to comply, during incorporation phases, with the rules of Good Technique and with what is indicated in this manual.

Precaution in installation and handling operations. Significantly heavy equipment.

Avoid damage. Do not operate with inadequate tools

When handling the axis or system of axes, always make sure that the support or anchoring surfaces do not leave room for bending.


Warning: moving parts. Do not leave objectson the axis

In order to stabilize the axis or system of axes, before handling it is mandatory to securely block the mobile parts. When moving axes with vertical translation (Z AXES) or combination systems (horizontal X and/or more than one vertical Z), it is mandatory to use the vertical movement to put all of the axes at the corresponding lower limit switch.

Special installations: check the depth of the threads on moving elements

Make sure that the system has been installed on a level floor surface.

Do not overload. Do not subject to torsion stress.

In use, accurately comply with the specific performance values declared in the catalog or, in particular cases, the load and dynamic performance characteristics requested in the phase prior to design.

Do not leave exposed to atmospheric agents.

For modules or parts of modular systems with vertical movement (Z axis), it is mandatory to mount self-braking motors to neutralize the risk of the axis dropping.

Before mounting the motor on the gearbox, it is advisable to perform a pre-test of the motor itself, without connection to the gear unit. The testing of this component was not carried out by the manufacturer of the machine. It will therefore be the responsibility of the customer of Rollon to perform the testing of the same, in order to verify its correct operation.

The images in this manual are to be considered merely an indication and not binding; therefore, the supply received could be different from the images contained in this manual, and Rollon S.p.A has deemed it useful to insert only one example.

Systems supplied by Rollon S.p.A. were not designed/envisaged to operate in ATEX environments.

Residual risks

- Mechanical risks due to the presence of moving elements (X, Y axes).
- Risk of fire resulting from the flammability of the belts used on the axes, for temperatures in excess of 250 °C in contact with the flame.
- The risk of the Z axis dropping during handling and installation operations on the partly completed machinery, before commissioning.
- Risk of the Z axis dropping during maintenance operations in the case

of a drop in the electrical power supply voltage.

- Crushing hazard near moving parts with divergent and convergent motion.
- Shearing hazard near moving parts with divergent and convergent motion.
- · Cutting and abrasion hazards.

Basic components

The Partly Completed Machinery shown in this catalog is to be considered a mere supply of simple Cartesian axes and their accessories agreed when the contract is stipulated with the client. The following are therefore to be considered excluded from the contract:

- 1. Assembly on the client's premises (direct or final)
- 2. Commissioning on the client's premises (direct or final)
- 3. Testing on the client's premises (direct or final)
 It is therefore understood that the aforementioned operations in points 1.,2., and 3. are not chargeable to Rollon.

Rollon is the supplier of Partly Completed Machinery, the (direct or final) client is responsible for testing and safely checking all equipment which, by definition, cannot be theoretically tested or checked at our facilities where the only movement possible is manual movement (for example: motors or reduction gears, cartesian axes movements that are not manually operated, safety brakes, stopper cylinders, mechanical or induction sensors, decelerators, mechanical limit switches, pneumatic cylinders, etc.). The partly completed machine must not be commissioned until the final machine, in which it is to be incorporated, has been declared compliant, if necessary, with the instructions in Machinery Directive 2006/42/CE.

Instructions of an environmental nature

Rollon operates with respect for the environment, in order to limit environmental impact. The following is a list of some instructions of an environmental nature for correct management of our supplies. Our products are mainly composed of:

Material	Details of the supply			
Alluminum alloys	Profiles, pleates, various details			
Steel with various composition	Screws, racks and pinions, and rails			
Plastic	PA6 – Chains PVC – Covers and sliding block scrapers			
Rubber of various types	Plugs, seals			
Lubrification of various types	Used for the lubrication of sliding rails and bearings			
Rust proof protectione	Rust proof protection oil			
Wood, polyethylene, cardboard	Transport packaging			

At the end of the product's life cycle, it is therfore possible to recover the various elements, in compliance with current regulations on waste issues.

Safety warnings for handling and transport

- The manufacturer has paid the utmost attention to packaging to minimize risks related to shipping, handling and transport.
- Transport can be facilitated by shipping certain components dismantled and appropriately protected and packaged.
- Handling (loading and unloading) must be carried out in compliance with information directly provided on the machine, on the packing and in the user manuals.
- Personnel authorized to lift and handle the machine and its components shall possess acquired and acknowledged skills and experience in the specific sector, besides having full control of the lifting devices used.
- During transport and/or storage, temperature shall remain within the allowed limits to avoid irreversible damage to electric and electronic components.
- Handling and transport must be carried out with vehicles presenting adequate loading capacity, and the machines shall be anchored to the established points indicated on the axes.
- DO NOT attempt to bypass handling methods and the established lifting points in any way.
- During handling and if required by the conditions, make use of one or more assistants to receive adequate warnings.
- If the machine has to be moved with vehicles, ensure that they are adequate for the purpose, and perform loading and unloading without risks for the operator and for people directly involved in the process.
- Before transferring the device onto the vehicle, ensure that both the
 machine and its components are adequately secured, and that their
 profile does not exceed the maximum bulk allowed. Place the necessary
 warning signs, if necessary.
- DO NOT perform handling with an inadequate visual field and when there are obstacles along the route to the final location.
- DO NOT allow people to either transit or linger within the range of action when lifting and handling loads.
- Download the axes just near the established location and store them in an environment protected against atmospheric agents.
- Failure to comply with the information provided might entail risks for the safety and health of people, and can cause economic loss.
- The Installation Manager must have the project to organize and monitor all operative phases.
- The Installation Manager shall ensure that the lifting devices and equipment defined during the contract phase are available.
- The Manager of the established location and the Installation Manager shall implement a "safety plan" in compliance with the legislation in force for the workplace.
- The "safety plan" shall take into account all surrounding work-related

- activities and the perimeter spaces indicated in the project for the es tablished location.
- Mark and delimit the established location to prevent unauthorized personnel from accessing the installation area.
- The installation site must have adequate environmental conditions (lighting, ventilation, etc.).
- Installation site temperature must be within the maximum and minimum range allowed.
- Ensure that the installation site is protected against atmospheric agents, does not contain corrosive substances and is free of the risk of explosion and/or fire.
- Installation in environments presenting a risk of explosion and/or of fire
 must ONLY be carried out if the machine has been DECLARED
 COMPLIANT for such use.
- Check that the established location has been correctly fitted out, as defined during the contract phase and based on indications in the relative project.
- The established location must be fitted out in advance to carry out complete installation in compliance with the defined methods and schedule.

Note

- Evaluate in advance whether the machine must interact with other production units, and that integration can be implemented correctly, in compliance with standards and without risks.
- The manager shall assign installation and assembly interventions ONLY to authorized technicians with acknowledged know-how.
- State of the art connections to power sources (electric, pneumatic, etc.)
 must be ensured, in compliance with relevant regulatory and legislative requirements.
- "State of the art" connection, alignment and leveling are essential to avoid additional interventions and to ensure correct machine function.
- Upon completion of the connections, run a general check to ascertain that all interventions have been correctly carried out and compliance with requirements.
- Failure to comply with the information provided might entail risks for the safety and health of people, and can cause economic loss.

Transport

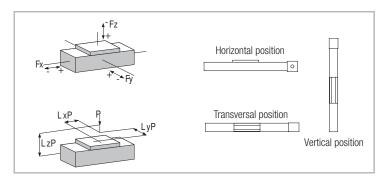
- Transport, also based on the final destination, can be done with different vehicles.
- Perform transport with suitable devices that have adequate loading capacity.
- Ensure that the machine and its components are adequately anchored to the vehicle.

Handling and lifting

- Correctly connect the lifting devices to the established points on the packages and/or on the dismantled parts.
- Before handling, read the instructions, especially safety instructions, provided in the installation manual, on the packages and/or on the dismantled parts.
- DO NOT attempt, in any way, to bypass handling methods and the established lifting, moving and handling points of each package and/or dismantled part.
- Slowly lift the package to the minimum necessary height and move it with the utmost caution to avoid dangerous oscillations.
- DO NOT perform handling with an inadequate visual field and when there are obstacles along the route to reach the final location.
- DO NOT allow people to either transit or linger within the range of action when lifting and handling loads.
- Do not stack packages to avoid damaging them, and reduce the risk of sudden and dangerous movements.
- In case of prolonged storage, regularly ensure that there are no variations in the storage conditions of the packages.

Check axis integrity after shipment

Every shipment is accompanied by a document ("Packing list") with the list and description of the axes.


- Upon receipt check that the material received corresponds to specifications in the delivery note.
- Check that packaging is perfectly intact and, for shipments without packaging, check that each axis is intact.
- In case of damages or missing parts, contact the manufacturer to define the relevant procedures.

Data sheet /

General data:	Date: Inquiry N°:
Address:	Contact:
Company:	Zip Code:
Phone:	Fax:
F-Mail:	

Technical data:

				X axis	Y axis	Z axis
Useful stroke (Including safety overtravel)		S	[mm]			
Load to be translated	·	Р	[kg]			
Location of Load in the	X-Direction	LxP	[mm]			
	Y-Direction	LyP	[mm]			
	Z-Direction	LzP	[mm]			
Additional force	Direction (+/-)	Fx (Fy, Fz)	[N]			
Position of force	X-Direction	Lx Fx (Fy, Fz)	[mm]			
	Y-Direction	Ly Fx (Fy, Fz)	[mm]			
	Z-Direction	Lz Fx (Fy, Fz)	[mm]			
Assembly position (Horizontal/Vertical/Transversal						
Max. speed		V	[m/s]			
Max. acceleration		a	[m/s ²]			
Positioning repeatability		Δs	[mm]			
Required life		L	yrs			

Attention: Please enclose drawing, sketches and sheet of the duty cycle

EUROPE

ROLLON S.p.A. - ITALY (Headquarters)

Via Trieste 26 I-20871 Vimercate (MB) Phone: (+39) 039 62 59 1 www.rollon.it - infocom@rollon.it

ROLLON S.p.A. - RUSSIA (Rep. Office)

117105, Moscow, Varshavskoye shosse 17, building 1 Phone: +7 (495) 508-10-70 www.rollon.ru - info@rollon.ru

AMERICA

ROLLON Corporation - USA

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492 www.rolloncorp.com - info@rolloncorp.com

ASIA

ROLLON Ltd - CHINA

No. 1155 Pang Jin Road, China, Suzhou, 215200 Phone: +86 0512 6392 1625 www.rollon.cn.com - info@rollon.cn.com

Consult the other ranges of products

ROLLON GmbH - GERMANY

Bonner Strasse 317-319 D-40589 Düsseldorf Phone: (+49) 211 95 747 0 www.rollon.de - info@rollon.de

ROLLON Ltd - UK (Rep. Office)

The Works 6 West Street Olney Buckinghamshire, United Kingdom, MK46 5 HR Phone: +44 (0) 1234964024

www.rollon.uk.com - info@rollon.uk.com

ROLLON - SOUTH AMERICA (Rep. Office)

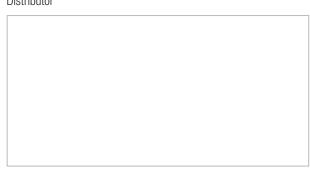
R. Joaquim Floriano, 397, 2o. andar Itaim Bibi - 04534-011, São Paulo, BRASIL

Phone: +55 (11) 3198 3645

www.rollonbrasil.com.br - info@rollonbrasil.com

ROLLON India Pvt. Ltd. - INDIA

1st floor, Regus Gem Business Centre, 26/1 Hosur Road, Bommanahalli, Bangalore 560068 Phone: (+91) 80 67027066 www.rollonindia.in - info@rollonindia.in


Distributor

Les Jardins d'Eole, 2 allée des Séquoias F-69760 Limonest

Phone: (+33) (0) 4 74 71 93 30 www.rollon.fr - infocom@rollon.fr

ROLLON - JAPAN

Tokyo 105-0022 Japan

Phone +81 3 6721 8487

www.rollon.jp - info@rollon.jp

3F Shiodome Building, 1-2-20 Kaigan, Minato-ku,

All addresses of our global sales partners can also be found at www.rollon.com